-A191 897 AN 00D (OBJECT-ORIENTED DESIGN) PARADIGM FOR FLIGHT 1/
SIMULATORS (U) CARNEGIE-MELLON UNIV PITTSBURGH PA
SOFTWARE ENGINEERING INST K J LEE ET AL DEC 8?7
CMU/SET-87-TR-43 ESD-TR-87-206 Fr6 172

UNCLRSSIFIED

NL

P A . e R SR SR SET SRl SRR MAl I il l el ol 2.8 $.8 Wi i Sl 31 0 2 A £ 2 A g & s 2t AL R E ol i s ath avh aro At o Rl R ot T R k1 TRy]

(R S
oy

s ARERAAR 1A

e
N &

1.0 & ks ke
== « li mz,g
— t. l& ——

c o 2.0
I l e mg

E

W 1

25 s nes |

MICROCOPY RESOLUTION TEST CHART ‘
T NG A CanUARTE e b

N
16,

Il

L
AR ':":-' R
i’:%‘ "“. "n "0 9‘0.0‘1" ‘. ‘, \ ﬁ‘ "y

'.'0‘ '- & i‘g.

.
Q . . .
" R0 '.a “' NOMTANN o‘ 'o‘ IR u‘"l‘; .

-

Rl et)
LN,

e, -
vy x,

QY

[2
e
‘g‘»‘«rs

'lt‘
5t

v !

AD-A191 097

.
*

Dmmumm c'mm“_‘

A MOM for pub ic mm

| o M AT s e G ok’ o Gab Uab Sufl Jeuh Auf Mol S0 Sab Bat Rhet St gl it it G Jinh S (b Batl ot b Bl Syt Beb et Ra® Sot Bai ba¢ o= et ¢ Ae¢ Sa* 100" “T:".“i'.’v’f":"—"‘.“'."':'w

CMU/SET87.TR-43 ME FILE COPY
ESD-TR-87-206

An OOD Paradigm for Flight
Simulators

Kenneth J. Lee
Michael S. Rissman

Richard D'Ippolito
Charles Plinta
@ Roger Van Scoy

December 1987

DTIC

ELECTE

“N

*
88 &

Tttt huMon Tl e
LR AT IR T S . . W \ '\,‘\ """"" X R S S Yy \\ o AT
...... A ‘m T > e «-.r.r AT
LRCRIRRISY i&':‘uh‘u'h W P PPN Jl“'.AA)\'.):H.lD .A\‘.Ib‘ %L, .IO‘ VLML W .A"' SN .A'\.h\ "h.-\;

FEB 05 1988 ¥

(%)

g rnyyr. W
i A REE
o

) % X Ly '
P AN AN

)"J'. ' U ;-' R "

oL,

.‘:'
‘Ca
'Cd
O

“-

Il R it B

N LS

|'||“||||'|

Technical Report
CMU/SEI-87-TR-43
ESD-TR-87-206

December 1987

An OOD Paradigm for Flight

Simulators

Kenneth J. Lee
Michael S. Rissman
Richard D’Ippolito
Charles Plinta
Roger Van Scoy

Dissemination of Ada Software Engineering Technology

Accession For
, R) _/_____F——J
NTIS GRAXIL

|
| Urennsunced Tl
|
|
1

DTIC TAB M
Juntitication

o ety

By oo e
Disteivuton/)
Aspilaniliity Tofes

e

tvanty wmod/er

Dtat § Speriad

T

¥

/.— yAaLTyY

\ | \GPECTED f
2

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carneg:e Mellon University
Pittsburgh, Pennsylvania 15213

g

A |

e

il

Ll

LY
-

LA

&

é

This technical report was prepared for the

SE! Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

N L W
Karl Shingler
SE! Joint Program Office

This work was sponsored by the U.S. Department of Defense.

This document is available through the Defense Technical information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Govemment agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FORA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical information Services. For information on
ordering, please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce,
Springfield, VA 22161

PR IR R TOIN AT W AW W W IV TN TV NI TN,

- v VR TR TR ORTR ORISR ETROR TR AETEAREARERETRARE TR ART AT T T T T RN AN AN EANTTEIN AN R TR R T T ,-.-(“-.-“.-".-.—.ﬂ_-t-w
=
R
oL
Table of Contents
R
- 1. Introduction 1
ﬁ 1.1. Background 1
1.2. Motivation 1
" 1.3. Characteristics of the Application Domain 2
g 1.4. Reader’s Guide 3
2. Approach 4
2.1. History 4
- 2.2. Design Goals 5
ﬁ 2.3. Evolution of the Paradigm 6
3. Concepts Used by the Paradigm 7
~ 3.1. Overview of the Software Architecture 8
- 3.1.1. The Executive Level 8
3.1.2. System Level 9
) ! 4. Paradigm Description 11
-, 4.1. Engine Parts Description 11
o 4.2. Object Abstraction 13
= 4.2.1. Object Managers 14
4.2.2. Object Manager Structure 15
by 4.2.3. Object Manager Operations 15
4.2 4. Advantages of the Object Abstraction 18
. 4.3. Connection Abstraction 18
e 4.3.1. Overview of Connections 18
& 4.3.2. Procedural Abstraction 19
. 4.3.2.1. Get Needed Information 20
oo 4.3.2.2. Convert Information 20
~ 7 4.3.2.3. Put Converted Information 22
~ 4.3.3. Advantages of Connections 22
- 4.4. Subsystems and Systems 22
4.4.1. Subsystem Aggregates 23
;\' 4.4.1.1. Building an Aggregate 23
i’
‘ .T: CMU/SEIL-87-TR-43 i

e Lt Y I o U O A /ST ATI N Rt A N . N m
R o e e Lt e e TSR

e Boo ant nod Bog e d o A b A BV B'e Sia @-o Sie Sla She Ate BlSe AR val AR el Vol Sl U 0 Fop Sl Sai Eol Dal Nadl ShE SR Tl B Thall Sl -'i'E‘I'n'nNh'u‘l‘u'T

4.4.2. Updating 24
4.4.3. Advantages of Subsystems and Systems 26

4.5. Executives 27
4.5.1. Implementation of an Executive 27
4.5.2. Advantages of Executives 29

4.6. Advantages of the Architecture of the Paradigm 29

5. Development Process 32
5.1. Role of the Paradigm 32
5.2. Templates and Reuse 32
5.2.1. Diagram Parsers 34

5.3. Enhancements to Object/Connection Diagrams 34

6. Open Issues 35
6.1. Distributed Processing 35
6.2. Tuning 36
6.3. Reposition and Flight Freeze 37

7. Electrical System 38
7.1. Additional Concepts 38
Appendix A. Software Architecture Notation 40
Appendix B. Object Manager Template 45
Appendix C. Engine code 55
C.1. Package Global_Types 55
C.2. Package Standard_Engineering_Types 56
C.3. Package Bleed_Valve_Object_Manager 57
C.4. Package Burner_Object_Manager 60
C.5. Package Diffuser_Object_Manager 63
C.6. Package Exhaust_Object_Manager 65
C.7. Package Fan_Duct_Object_Manager 68
C.8. Package Rotor1_Object_Manager 70
C.9. Package Rotor2_Object_Manager 73
C.10. Package Flight_Systems 78
C.11. Package body Flight_Systems 79
C.12. Package Flight_Subsystem_Names 80
C.13. Package Flight_Systems_Connection_Manager 81
C.14. Package body Flight_Systems_Connection_Manager 83
C.15. Separate Procedure body Process_Engine_Connections_To 84
C.16. Separate Procedure body Process_Power_Connections_To 87
C.17. Package Engine_Updater 88
C.18. Package body Engine_Updater 89

ii CMU/SEI-87-TR-43

s)

PO IO W w W W M W W g W vy g W €M ®a® Ta T T AT AT AT G G AT N e, - N P SR
\ .«.{.\‘r J\Q W T A A LRt S S A S SV PR L YL WSS ¥ 2 e

D 6 M S s I T N NI ATI I IN N SR NN N R AT AN PRI SN

r
. C.19. Package Engine_Aggregate 92
ﬁ C.20. Package System_Power_Updater 94
E

sy

| (N0

Cy

‘;
E

Ct
e,

.

R

2
L~
N
) -,
)

L)

‘n
. .,
D)
k<
! "t

" CMU/SEI-87-TR-43 iii
r =~

o)

. [o, W o o oo W oy W -
WO NI L Mo By £ o Lo i o / o
l“‘i‘- R .o l l, - I"“"v 1‘ t‘\' ‘ C" * 0 ‘. 'y l‘- * n W, '. '. W l. l‘ 9, ‘t'. l‘. v .‘n e l'- n l‘w > \t'n t\}a\‘w , bl' \J

!

U |

| A

AL

List of Figures

Figure 2-1: Object Dependency Example 6
Figure 3-1: Software Architecture Example 8
Figure 3-2: Executive Level Architecture 9
Figure 3-3: Connection Manager Architecture 10
Figure 3-4: System Level Architecture 10
Figure 4-1: Turbofan Engine Dependency Diagram 12
Figure 4-2: Burner Object Manager 16
Figure 4-3: Spark Conversion Routine 21
Figure 4-4: Engine Representation Example 23
Figure 4-5: Engine Aggregate Example 25
Figure 4-6: Reference to an Engine Object using the Aggregate 26
Figure 4-7: Executive Activity Table Example 27
Figure 4-8: Flight Executive Example 28
Figure 4-9: Executive Connection Procedure Example 29
Figure 4-10: Communicating with a Data Transfer Buffer 29
Figure 5-1: Object Manager Template Example 33
Figure A-1: Object, Subsystem and Dependency Notation 41
Figure A-2: Package Notation 42
Figure A-3: Subprogram Notation 43
Figure A-4: Task Notation 44
iv CMU/SEI-87-TR-43
'-';'.}:\::\"\:;\ﬁ'-:-.{\:;\::iix':(:&: SOOI 50 \“\::\"*:;\-.;‘_:\‘_-:;m

ER

v v
LAY

e -
. 3

¥y

Pl % o
S

KRN |

b SR

Ul o

-

Ty}

1. Introduction

1.1. Background

This report presents a paradigm for object-oriented implementations of flight
simulators. It is a result of work on the Ada Simulator Validation Program (ASVP) carrie 1
out by members of the technical staff at the Software Engineering Institute (SEI).

1.2. Motivation

Object-oriented design predominates discussions about Ada-based software engineer-
ing. The identification of objects and the implementation of objects are two separate issues.
This paradigm is a model for implementing systems of objects. The objects are described in a
form of specification called an object dependency diagram.! The paradigm is not about how
to create the specification,

Although much has been written on object-oriented design, SEI project members could
find no examples of object-oriented implementations relevant to flight simulators. Examples
were required for two reasons. First, object-orientation was new to both of the contractors on
the ASVP. A methodology which leads to a specification of objects is useful only if developers
know how to implement what is specified. Second, managers were skeptical about the bene-
fits of object-oriented design. Examples were needed to determine whether benefits out-
weigh costs.

The intent of our work was to produce examples of object-oriented systems. It was not
our intent to determine whether object-oriented design was best for flight simulators.2

!See Chapter 4 and Figure 4-1 for an example of an object dependency diagram.

2See Section 2.1 for some historical motivation.

CMU/SEI-87-TR-43 1

A san oo

R W PP W e g

Aalh Sl - St St AR A b R |
[*'
Y _',f
e
b
P ~\
o
_‘\-
h
o 1.3. Characteristics of the Application Domain

N The paradigm was developed for a specific application domain, namely flight
y :_\: simulators and training devices. This section puts the paradigm in context by briefly de-
o scribing the relevant features of the application domain.

A, The objective of a flight simulator is to reproduce on the ground the behavior of an
= aircraft in flight. Simulators are used to

o

:-E, ¢ train aircrew,

e e train maintainers of aircraft, and

,“ ¢ aid designers of aircraft.

) _:: A training simulator consists of a mock-up of stations for the aircrew being trained.

; J The mock-up contains the controls available to manipulate the aircraft and systems for cuing

4"‘ the operator to the aircraft’s response to his actions. Cues include gauges, video, sound, and

p motion.

.‘

'_'.: The training mission is set by an instructor at an Instructor Operator Station (I0S).
Some of the factors set by the instructor are longitude, latitude, altitude, and atmospheric
'::; conditions. They also affect the behavior of the simulator by introducing aircraft malfunc-

. tions.

{

e The ASVP focused on software that models the behavior of major systems affecting an
:’ aircraft’s flight: the airframe, the engines, the electrical system, the fuel system, the
.. hydraulic system, and others.

AR
b
Traditionally, this software is put under the control of an executive which periodically

L, updates systems. Flight simulators are not event-driven. Interaction between systems in

- the real aircraft are continuous. Simulators model those interactions in discrete time.

‘-

] N Time constraints are normally tighter than memory constraints. Multiple processors
D)

; are used to distribute processing and to link the software to hardware in the aircrew training
¥ station. Trends are such that multi-processor architectures are becoming more prevalent in
‘ ‘: the domain.

D
"': Flight simulators are long-lived and frequently modified. The two major causes of
Y modification are modifications to the aircraft itself and changes in the training missions.
. .4 Typical of the latter is the simulation of new malfunctions.

b

::: Flight simulators are based on math models provided by the manufacturer of the air-

: craft components in the actual aircraft. The ultimate test of the simulator is the way it feels

to aircrew experienced with the aircraft being simulated. The process of tuning the feel of
the simulator is called aircrew tuning.
Flight simulators provide natural opportunities for reusing software. First, different

-—— i

2 CMU/SEI-87-TR-43

- e a % " . e - . ~¢"‘$.(‘I."~l~RI
_. -

.
YGRS
‘ » ': '
) L
wl' .
". ‘\ -
», A
O
u“~| .'.
B aircraft have the same kinds of components, e.g., engines, fuel systems, electrical systems,
Y o0 etc. Sometimes a particular instance of a kind of component, a Pratt and Whitney engine for
P ‘ example, is used on a variety of aircraft. Second, the three classes of simulators—training,
:-5. maintenance, and engineering—model the same components to varying degrees of fidelity.
_\:' ~ Third, a simulator is made up of systems that can be viewed identically at some level of
y NS abstraction.
A
" R
M 1.4. Reader’s Guide
.
‘:_:- This report contains the work completed to date, presents the paradigm, and discusses
,‘;:- A the advantages of the paradigm. It is meant to stand on its own merits. The model we have
; developed solves a specific set of problems. We do not claim it to be the only model for
Y solving these problems. The paradigm uses many of the characteristic software engineering
" concepts, but the report is not intended to be a report on software engineering theory.3
e
~
| ° The next chapter discusses our approach to developing the paradigm and how we as-
. ; - sessed the fit of our solution to the problem at hand.
e Chapter 3
£ introduces the conceptual elements of the paradigm and provides an overview of the
! software structure implied by the paradigm.
- Chapter 4
(i presents a detailed view of the elements of the paradigm. The elements are presented
- bottom-up using an Engine system as an example. Each section on a particular ele-
ment ends with a discussion of the benefits of the implementation chosen for the para-
:::- o digm. The final section of Chapter 4 summarizes the benefits of the paradigm.
A Chapter 5
- discusses the role of a paradigm in the development process.
D) '_ Chapter 6
e discusses issues which we have thought about during the development but have not
o had time to fully address.
ho Chapter 7
o is a very brief presentation of a simulator Electrical system.
fy .
°® Appendix A
", T describes a modified form of the notation expounded on by Grady Booch in his book on
:: software engineering with Ada [1] and his book on reusable software components with
- Ada [2]). The notation is used in the diagrams in Chapter 3.
v Appendix B
Yo, v contains an object manager template. The use of reusable code templates is discussed
@ in Chapter 5.
o~ Appendix C
a2 presents a version of the Engine system code complete through the package specifi-
AR) . .
-2 cations. The intent is to demonstrate the software architecture defined by the object
. paradigm discussed in Chapter 4.
o
®
.- - If the audience perceives that this report would be useful within a tutorial on software engineenng, we invite
: ;: such a use of the report.
o CMU/SEI-87-TR-43 3
b & L]
;: ~: ~

p kA At e B A e Lt Tt R s
R s A et o P TN AN
(1 N . A\ Ba WA 10 2 i a) ». s

-~ . ad » % N e S TR NA I IS NN LT S S N LR
-'J') 4 W ..’-l' o\.'-r._l o .r\a.r .

o o))
".O- ~~')Y ?‘0‘,-..’&:’*- ,-'l':‘! T AT NN " X ih .

Ldadial b a g b aoe aus Atk aad ath ol aBR L A" oA lav ia® Ret et et R gt et Ral it Ay i Al R LN DO N L B B e S S e

Al i) Py

e b }

2. Approach

2.1. History

The project team began the search for a paradigm after reviewing an implementation
of an electrical system done by one of the contractors on the ASVP. The implementation was
more data-oriented than object-oriented. The implementation was a definite improvement
over the original FORTRAN implementation. However, the team did not consider the imple-
mentation to be exemplary.

The project team decided to spend what it thought would be no more than a month or
two developing an example of a pure object-oriented design of an electrical system. A circuit
diagram was used to identify the objects and the relationships among the objects. The be-
havior of the objects, e.g., circuit breakers, relays, and batteries, and of circuits in general,
was well understood.

Material available to us on object-oriented design did not adequately address connec-
tions among objects or updating systems of objects in discrete time.

The project team implemented an object-oriented electrical system which came close to
satisfying the goals described below. At that time one of the contractors on the ASVP asked
the project team to sketch out an object-oriented implementation of an engine. The team
observed that the object-oriented implementation of an engine and of an electrical system
were identical at some level of abstraction.

The project team decided to capture the similarities in a paradigm for object-oriented _3
systems. The paradigm was to dictate how an object-oriented specification would be imple-
mented in software and how the update of systems would be controlled. The drive to gener- :'_',4‘
alize uncovered flaws in our designs of both the engine system and the electrical system. "
The project team did not develop the paradigm methodically. We were not interested 3
in testing design methods. Our goal was to produce a paradigm for object-oriented systems. -
! We did not want to limit our search space to architectures produced by known methods.
¢ =
3 -~
b
3
L .
. 4 CMU/SEI-87-TR-43 =
1
f ST VRIOTX IR AT A ';‘-':r:; N L Sl Sl e

PP SAC A
. . al e e
ST AV T Vs PN eV, :

s

T

>

-

! ‘
).:".
XS
SO
-"' -\'
-
\ |
i ..
-
.
S
N .
7
A
-
‘-‘ '-.
1-.
i -
o
2
--‘ _.;-
)
~
‘.v‘._ .
w: T
“o
A
I
s_‘r o
e
"
‘.(-
SR
~ "y
O
e
T b
S
4
"
TN
I,
Pl
-
\'
r _
I-' -
n." ’
A
v
lg./ '
I" ’-
]
-
N
- :
s
.r:\ o
>
S
“n
O »
o
Wy
J
o o
R
o,

2.2. Design Goals

The project team began with two basic goals. One was to eliminate nested implemen-
tations of objects. The other was to simplify dependencies among objects.

Nested objects result from decompositional approaches that purport to help the desig-
ner discover which objects are needed to implement a system. For example, the designer
begins with the notion of an engine as a black box. All interfaces to the engine appear at the
surface of the black box. Now, suppose the vibration of an engine compressor needs to be
metered. The designer decides to decompose the engine into other objects, one of which is a
compressor. Access to the vibration level of the compressor passes through two levels: the
engine level and the compressor level. Further, decomposition might lead to modeling each
stage of the compressor as an object, thus adding a third layer to the nested object. Finally,
black box implementations require knowledge of the entire black box, even when only one
state or aspect of the black box is used.

Nested, hierarchical objects do have advantages. First, it should be possible to update
a composite object, such as an engine, as if it were a black box. Second, it should be possible
to reuse an object, such as an engine, as a separate entity.

Figure 2-1 shows a dependency between objects A and B. In this example, B provides A
with something.* Thus the state of A depends on the state of B.®> One common solution is to
have the implementation of object A with object B. When A is updated, A reads the relevant
state of B. This solution does not work if B and A are on separate processors. Even if A and
B are on the same processor, the dependencies for devices as complex as flight simulators are
complicated themselves. Also, it is never clear which object should define the dependent
data type.

Another common solution is to have object B call object A and report its state. This
solution introduces a new problem without solving the problem mentioned above. If the flow
between B and A is continuous, then it is unnatural for object B to model discrete time by
controlling the rate at which A is updated. Further, if B and A are part of a closed feedback
loop, the update cycles indefinitely.

The major problems with the solutions discussed above involve the fact that objects in
flight simulators interact through real-world entities, such as wires and pipes. The real-
world connections are typically not modeled in software. Instead they are subsumed by
procedure calls embodied in one of the objects.

*The same diagrammatic notation is used throughout this report. The dependent object is at the tail of the arrow.
It depends on something from the object at the head of the arrow.

5In Ada, an object which depends on another, separately compiled object, uses the with clause to gain visibility of
the dependent object. The object 18 said to with the dependent object.

CMU/SEI-87-TR-43 5

c e RTRTETTRTRLN SRR N *‘J‘W

Object A —»| Object B

: j:.:-‘ Figure 2-1: Object Dependency Example

=3

1 ,5 (] .

s 2.3. Evolution of the Paradigm

. .
. Designers talk about the fit of a design to its context, the problem space. The criteria
:‘_:-f for assessing the fit of solutions to complex problems often can be determined only in re-
\‘:‘ sponse to a proposed solution and cannot be determined before solutions are generated. Such

was the case for the paradigm.

X Our team began with intuitive feelings about the standard goals of software engineer-
- ing; goals such as modularity, ease of enhancement, and reuse. The paradigm passed

- through four or five iterations within the team. Each iteration left a legacy of criteria for
assessing the fit of the solution for the paradigm.

For example, the model for object managers® and the means for connecting objects
o surfaced in the first version of the paradigm. The objects stood alone, and were not depend-
ent on Ada types declared elsewhere. This enhanced the reusability of the object managers
and faclitated independent development. The means for connecting objects had an intuitive
analog in the real-world. Pipes and wires, connecting objects in the world, are as real as the
.i objects themselves and should not be subsumed in software by the implementations of the
i objects.

In addition, the number of concepts was minimized. Those objects which had no
analog in the physical world were removed.

The chapters which follow discuss the advantages of the paradigm. We did not set out
to obtain these advantages. The advantages revealed themselves as the work progressed.
An advantage which revealed itself in one iteration was retained as a criterion for evaluating
the fit of subsequent iterations.

&L

60bject managers are introduced in Chapter 4.

6 CMU/SEI-87-TR-43

P A A G R ey

A 5

>
l'

S

-

5908

3. Concepts Used by the Paradigm

This chapter provides a brief description of some of the concepts introduced with the
paradigm and a high level overview of the software architecture defined within the para-
digm. The concepts are further elaborated in Chapter 4.

The paradigm described in this report begins with the notion of an executive. An
executive controls the update of a set of systems compiled together running on a single
processor. The paradigm assumes that there will be more than one set of systems and that
multiprocessing will be involved.

Communication between executives is handled by an abstraction called a buffer. A
buffer is some means of sharing data among separately compiled software.” The paradigm
makes no assumption about how the operating system transfers data or how executives on
separate processors are invoked.

The fundamental units of the paradigm are objects and connections. Objects map to
real-world entities. An object is implemented as a math model that maps the environmental
effects on the object to the object’s outputs, given the attributes of the object and its opera-
tional state. The implementation isolates individual effects. Also, an object is not aware of
its connections to other objects.

A connection models real-world conduits and is the mechanism for transferring sate
information between objects. Processing a connection involves reading the state of some
objects on the connection and broadcasting to others.

At all levels, updates are accomplished by processing the appropriate connections. The
three levels discussed in the paradigm are subsystem, system, and executive. A subsystem is
an aggregation of objects and the connections among those objects. A system is a set of
subsystems and the connections from objects in any subsystem in the set to objects in any
other subsystem in the set. If a system has only one subsystem, then the system and the
subsystem are identical. An executive is a set of systems and all connections that cross

"In our observations of flight simulators, a buffer is a record data structure used in the communication between
processors.

CMU/SEI-87-TR-43 7

r

2 a8

AR 4 Adiilihed

P e P n
t‘u :‘-'Qtic"*:

‘.'4‘.”21

T tal

[
we

e A R R Ay el NS

system boundaries. Figure 3-1 shows views of an executive, two systems, and several sub-
systems and objects.

Executive-level

System 1 System 2
Subsystem 1 Subsystem 2
f 9 c
: ‘-q - /" . i
b /‘ f d
2 5

Executive is : System 1, System 2, and connections aand e
System 1 is : Objects 1, 2, and 3, and connections b and f
System 2 is : Subsystem 1, Subsystem 2, and connection ¢
Subsystem 1 is : Objects 4 and 5, and connection d
Subsystem 2 is : Object 6

Figure 8-1: Software Architecture Example

3.1. Overview of the Software Architecture

3.1.1. The Executive Level

Figure 3-2 shows the executive-level software architecture?. In this case, we assume
an executive for Flight_Systems. The body of Flight_Systems contains a tabular schedule of
subsystems to update. The names of the subsystems are declared in the package
Flight_Subsystems_Names, the sole purpose of which is to enumerate the names.

Each system is represented by a package called <system_name>_Updater.® The
specification of an Updater package exports a single procedure which is called by
Flight_Systems to update a subsystem of the system. A single parameter tells the Updater
which subsystem is to be updated.

See Appendix A for a description of the notation used in Figures 3-2, 3-3, and 3.4

"The use of "<...>" within subprogram names, type names, or text refers to a general case of the item. For
example, <system_name>_Updater, is a general form representing all instancea of the package name, e.g.,
Engine_Updater, System_Power_Updater, otc. See Chapter 5 for a more detailed discussion and examples of
the use of "<...>".

8 CMU/SEI-87-TR-43

‘-\\\ - R T N T T T T T P Y LY
u, -"‘f\f\f*ﬁ

WMEE ara ibs fdla oKl Al bedede w) %R mabel K

55 B Ll

PAC AL

N TR I "s-" o
L A il RN

Flight_Systems

Fiight_Subsystem_Names

Flignt_System _Connections Engine_Updater System_Power_Updater

Figure 3-2: Executive Level Architecture

The connections belonging to the executive-level are managed by an
<executive_name>_Connections package, in this case, Flight_System_Connections. The
architecture of the connection package is shown in Figure 3-3.

The body of the connection package is a series of separate procedures, one for each
system under the control of the executive. The separate procedures for systems with more
than one subsystem take a subsystem name as an argument.

Each procedure updates system objects connected to objects outside the system. As
discussed in the next chapter, objects are implemented as private types; pointers to the ob-
jects are stored in a data structure contained in a package, <system_name>_Aggregate.

3.1.2. System Level

Figure 3-4 shows the architecture of a system, using engines as an example. Objects in
a system are created and named by the <system_name>_Aggregate package. Objects are
managed by <object_name>_Object_Manager (OM) packages.

Systems with more than one subsystem use the names of its subsystems to differen-
tiate among identical objects and similar sets of connections. Details on this aspect of the
architecture are presented in the next chapter.

CMU/SEI-87-TR-43 9

e R N O s o a0 NN T e P A TN
O R LA C!’\'., M o " .’\..' bWy b O N :‘H‘“ " :.\.\ A

BTN

>y 3 AAA A S A Ay A I TS R e
33

Fiight_System_Connections

Engine_Aggregate Fiight_Subsystem_Names

T T T 1

o~ Rotori_OM Bumer_OM Bleed_Valve_OM Dmuw OM Fan_Duct OM Exhaust_OM

3 | I
: e) ,
B EEEE

OM = Object Manager

Figure 3-3: Connection Manager Architecture

Engine_Updater

|

Engine_Aggragate Fight_Subsystem_Names

sk 53R

Rotort_OM Rotor2_OM Burner_OM Bleed_Vaive_OM Diftuser_OM Fan_Duct_OM Exhaust_OM

: T T T T
3 "

N X

OM = Object Manager

Figure 3-4: System Level Architecture Y

10 CMU/SEI-87-TR-43 5

B WROWE W e WY W TV TO T N, "i'vww'lwtmwlwmwmwmmmv"m

W'y

;l:
n 4, Paradigm Description
n.’:
w
‘e
: The first example to illustrate the paradigm is a turbofan engine. Engines, in flight
training simulators, interact with a variety of other systems on the aircraft, including the
. fuel system, the oil system, the starter, the electrical system, and the hydraulic system. The
- engines also provide bleed air for cabin pressure and air conditioning.
=
. The next section in this chapter will describe the engine components and the inter-
':_- action of the engine with the rest of the aircraft systems. The following sections will describe
the paradigm using the engine model as an example.
" 4.1. Engine Parts Description
o The engine object dependency diagram in Figure 4-1 will be referred to throughout the
rest of this chapter. The diagram represents the objects which comprise a generic turbofan
engine and the engine’s relationship with the outside environment. The process for identi-
. fying the objects is not an issue for this report. The choice of objects may not be ideal, but for
: the purposes of the discussion in this report, this set of objects is acceptable. For more
- information on turbofan engines, see [3].
-
".T
§ - The engine is the area within the large rectangle. The rounded rectangles external to
e the engine represent other systems in the aircraft, e.g., electrical system, fuel system, etc., or
y o in the aircraft’s environment, e.g., atmospheric and environmental conditions.
L
b
., The square boxes within the rectangle represent the engine objects. The objects are:
-
} 5 e Diffuser
|
. ¢ Rotorl
- ¢ Fan Duct
¢ Rotor2
E ::‘ ¢ Burner

; e Bleed Valve
E . ¢ Exhaust.
A
'Y

3 CMU/SEI-87-TR-43 11

F'-— P ant i okl an oo LR g oaa oBa Bt _ka o R obd JlE ohi ot ol ok Al AR Al JBh JREtall ol SN g g Rl L SFS AL B i e S e R T A A B

&

TR AR P AR A

Air
Conditioning
System

A

inlet Pressure,

Discharge Pressure

Discharge Air Flow
Exhaust E
n
otp 9
Discharge Pressure Inle ssure i
Discharge Temperature
Discharge Air Flow n ‘A
8 4
iniet Pressure Inlet Pressure Inlet Air Flow
Engine Casing ¢ v 5 3
ine1 | ine2 In inlet k> .
Pressure, Pressure, E&E&{ﬁ? Pressure, Pressure, -
Temperature | Temperature, Temperature| | Temperature, Yy
Air Flow Air Flow Air Flow Air Flow s -
ni Disch) !
) Turbine1 Discharge F i Turbi
Te rosaute. Pressure, Pressure, Pressure, ﬁ
mperature, T
Air Flow emperature, Temperature, Temperature, ®
R Air Flow Air Flow Air Flow -
-
m 9
Rotor1 Rotor2 Burner ”
‘» ;
[) ‘
RPM RPM RPM o
Vibration Vibration -,j
l t
Kl
Torque ‘2
L l Fuel Flow Spark X
Hydraukic Electrical Fuel ;fu
v rau ue - .
Instrumentation Gys“m) (S\aner) System System wa
p
) oil Fuel ,::'
: System System e
*
y
]
P -
p)
p “-'
’ Figure 4-1: Turbofan Engine Dependency Diagram
4
p
12 CMU/SEI-87-TR-43 C)
\"\"-,\,\I'o.‘\;'-,‘-" npcp

A I AT AT I AT PEN

o~
(R

v
-t .

t(‘ !

.

——
..

The arrows represent dependencies among objects. A single-headed arrow points in
the direction of the dependency, e.g., the Diffuser is dependent on the Air Frame for mach
number, and the Instrumentation and the Air Frame are dependent on the Exhaust for
other state information. A double-headed arrow represents dependencies in both directions,
i.e., it is equivalent to two single-headed arrows. For example, the Air Conditioning is
dependent on the Bleed Valve for a value of air flow, and the Bleed Valve is dependent on
the Air Conditioning and the Cabin Air for a measure of the air pressure that they re-
quire. The arrows are labeled with the state information which is needed between the ob-
jects and the external systems.

The heavy line, labelled Engine Casing, is intended to represent the internal connec-
tion between the engine objects within the engine system. It is the connection through which
the air flows as the air passes through the engine. Each object has some dependency on the
air flow, as it passes through the connection, denoted by the arrows into the connection.
Thus the Rotorl is dependent on the Engine Casing for its Fan! Inlet air pressure, tem-
perature, and flow. Each object also makes its outputs available to the Engine Casing for
use by other engine objects, e.g., the Rotorl makes its Fanl Discharge air pressure, tem-
per.cure, and flow available to the Engine Casing.

Each engine object in the engine diagram interacts with its external environment as
defined by the diagram. No other dependencies on the outside world should be necessary
except for those shown in the diagram. The diagram serves as a specification for the engine
system interfaces. Given such a diagram and the paradigm description that follows, the
design of the engine system is complete.

Thus, an engine system is made up of the objects and connections between them inside
the large rectangle. An aircraft simulator, for a multi-engine aircraft, would have multiple
engine systems. Each would be handled identically, but would have different connections to
the outside world.

4.2. Object Abstraction

The identification and extraction of objects from the problem space is not an issue here.
This section describes an object abstraction assuming the objects are identified. The engine
diagram in Figure 4-1 will serve as an example.

Objects correspond to real world entities. Objects generalize behawvior, i.e., they know
nothing about their environment and they are identical in each of the engines in a multi-
engine system. They only differ in how they are connected to their environment. The ob-
jects, however, have no knowledge of these connections. The connections are described in
Section 4.3. Finally, objects' internal states are consistent with the latest known external
effects at all times.

CMU/SEI-87-TR-43 13

N RO T G ! JN{"QE‘{V’\'\" o T A A N T A A T A -
’ » -‘ ..
B R e R A R R L S A T R T e

Mdad el Sad dad Al o ake Ale Ahe Al Ste g gte Sle e di-Aud Nl Bad Sl Gl Sl Aol bl St ST Se SR ar il § Wl Wl Vel A e I E S D

Pt IS

4.2.1. Object Managers

Each object is represented by an object manager. There is a single object manager for
all instances of the object.! Referring to the engine diagram, Figure 4-1, there will be an
object manager for each of the objects in an engine:

o Diffuser

« Rotorl

e Fan Duct

» Rotor2

e Burner |
¢ Bleed Valve |
¢ Exhaust.

The object manager defines the attributes of the object. The attributes are invariant
characteristics defined at elaboration, e.g., an ampere rating of a circuit breaker.

The object manager allows the object’s environmental effects to be placed on the object.
The environmental effects are external object states which are required by the object to de-
termine its state. The environmental effects are placed on an object individually by connect-
ing procedures. The procedures defined for these operations are described in Section 4.2.3.

The object manager implements the math model for the object. The math model is
implementation dependent.

The object manager defines the operational state of the object. The operational state
refers to those characteristics which may change with time, e.g., the frictional state of a
rotor, malfunctions, or aging effects on various components.

The object manager defines the outputs available from the object. The outputs are)
generated by the math model, using the environmental effects placed on the object and any i
additional constraints imposed by the attributes and the operational state of the object. The
math model may be invoked when environmental effects are placed on the object or when
outputs are read from the object. This is an implementation level decision left to the system 1
designer; it is not defined by the paradigm.

¥ nar e

The object manager defines an interface to the operations available on an object. The
operations allow the placing of environmental effects, updating the operational state, and
reading the outputs of the object.

The actual instances of the object are stored in object aggregates which are discussed
in Section 4.4.1. An aggregate allows named access to the objects; no procedure call is re-
quired to retrieve the object.

1%The term manager is used because all access to each object is administered through the interface defined by the
object manager. .

14 CMU/SEI-87-TR-43 f

T T T N U P . N R P T, C o™ 0ol e v, "
FN PR IR R A PO ey . MOV ERAS C R LSS \:stﬁé\,-;;\ :k& t‘» :\ \!\R\ZEE:Q\‘\\:}:R\EE&&Q
P NI WA AN . A z

W“WWWWWWWWWW T AT ETRTR 'V."r."jw

N

-

N

‘/

Finally, the object manager is independent of the rest of the system. The only compi-

. lation dependencies are on global types.

) 4.2.2,. Object Manager Structure

- The representation of the object in an object manager is declared as a private type in

' the package specification. Figure 4-2 is a partial package specification containing typical
" type definitions found in an object manager.!! Use of a private type allows external access to
the object while hiding the details of the object’s implementation. In addition, the package

specification must define all the types used to describe the object’s attributes, the operational
state, and the placeholders for environmental effects.!2 For the Burner Object Manager in
<, Figure 4-2, a type definition for Spark is provided. In the private part of the package specifi-

cation, the object’s private type is declared as an access pointer to a data type which will be

E. the actual representation of the object. The data type is an incomplete type, the details of
it which are delayed until the package body.!3

- The object’s data representation, defined in the package body, must allow for storage of
* environmental effects and reading of the object’s outputs. A typical implementation is a

record with components for each of the object’s attributes, operational state variables, and
placeholders for the environmental effects.. Each attribute component must have a default
value and each operational state variable should have an initial state value.

i 4.2.3. Object Manager Operations
There are three types of operations within each object manager. There is also a stan-
dard naming convention for these operations. One side effect of the naming convention is
that all object managers begin to look very similar. The similarity can be exploited to create
an object manager template, see Chapter 5, which can be used to generate new object manag-

a ers.

The first type of operation is used to create new instances of the object. This operation
s is a function, named New_<object>!4, which returns an instance of the private type,
g <object>. For example, in Figure 4-2, the function provided by the Burner object manager
is called New_Burner; it returns an instance of the private type, Burner. This private type
is a pointer to a new instance of the data type representing the object. In addition, values for

‘:, ‘l' .lﬂ

1

1package Standard_Engineering_Types, withed at the beginning of Package Burner_Object_Manager in
Figure 4-2, contains several global definitions for typical simulator types. The package is shown in Appendix
Section C.2.

[P
-

12The attributes and operational state variables must be visible to the aggregate which instantiates the objects
and to the system and executive level connections which operate on these objects. See Sections 4.4.1, 4.3, 4.4, and
4.5 for descriptions of aggregates, connections, systems, and executives.

20%Y

[et

13306 Appendix Section C.4 for the complete Package Specification for the Burner object. Appendix C provides an
implementation of the Engine system through the Ada specifications.

- 14The use of “<...>" within subprogram names, type names, or text refers to a general case of the item. For
‘2, example, New_<object>, is the general form representing all instances of the New function, e.g., New_Burner,
- New_Rotorl, New_Exhaust, etc. See Chapter 5 for a more detailed discussion and examples of the use of "<...>".

g CMU/SEI-87-TR-43 156

I N '\({-r 'J\.:.r_:a_;.-;.- PO 'f,;r,:»ﬁ:r‘;f‘;.-_;.r,;:-,_

with Standard_Engineering Types;
package Burner_Object_Manager is

type Bumer is private; - o Burner isan abstractionofa
- Burner within an Engine.

type Spark is (None, Low, High);
function New_Burner return Burner;

procedure Give_Inlet_Air_To(

A_Burner :in Burner;

Given_Inlet_Pressure :in Standard_Engineering Types.Pressure;
Given_Inlet_Temperature :in Standard_Engineering_Types.Temperature;
Given_Inlet_Air_Flow :in Standard_Engineering Types.Air_Flow

%

Pl ol ate

-

procedure Get_Discharge_Air_From(

A_Burner :in Bumer;
Returning Discharge_Pressure :out Standard Engineering_Types.Pressure;
Retuming Discharge_Temperature: out Standard_Engineering_Types.Temperature;
Returning Discharge_Air_Flow :out Standard_Engineering Types.Air_Flow

%

v
PN ol AL R AR A

procedure Give_Fuel_Flow_To{

A_Burner :in Bumer;

Given_Fuel_Flow :in Standard_Engineering Types.Fuel_Flow
)

LT R bV)

procedure Give_Spark_To(
A_Burner : in Burner;
Given_Spark :in Spark
%

!

private

type Bumer_Representation; -- incomplete type, defined in
— package body

type Burner is access Burner_Representation;
-- pointer to a Burner representation

end Burner_Object_Manager;

Figure 4-2: Burner Object Manager

components of the data type, which need their default values changed or their initial values
defined, may be set by the New_<object> function. Typically, this function is called at
elaboration, i.e., during system initialization. The return value, a pointer which is the "ID"
of the new object, is stored and used to access the object in later operations. See Section 4.4.1
for more discussion on this point.

14

'y
e em s 2t 8

The second type of operation is used to write external effects, i.e., environmental ef-
fects and operational state changes, on an object.. The naming convention for this operation
i8 Give_<outside_effects>_To. The operation takes the object private type and either ex-
ternal environment values or new operational state values as arguments. In Figure 4-2, the
procedure Give_Inlet_Air_To is an example of this type of operation.

The characteristics of the Give_<outside_effects>_To procedure are as follows:

FEAT

16 CMU/SEI-87-TR-43

~ A . - n " ~ - J. ») ' '
" ""-"'\"-" . ‘V’s'\-' ¢ ”-. 's" “"."" " " -(' " ..‘*""'*}"‘ oy o a f\""’ ” * m, Tt

e report external environmental effects to the object. The stored values of the
environmental effects will be used the next time the object’s outputs are cal-
culated. These updates are typically under the control of a cyclic executive and
are placed on the object one or more times each cycle.

e report a change in the operational state to the object. The stored values of the
operational state variables will be used the next time the object’s outputs are
calculated. These changes are typically asynchronous events triggered by the
instructor at the I0S.

e the environmental effects and operational state variables are "saved" with the
object in the private data structure.

¢ the environmental values stored with the object are consistent with the external
effects at all times.

Ideally, the math model isolates the individual effects of the environmental effects.
Calculation of the object’s outputs can be postponed until the object’s internal state is read.

The interfaces defined by the Give_<outside_effects>_To operations can be read di-
rectly off the object diagram, Figure 4-1. There will be one procedure per dependency arrow.
For example, in Figure 4-2, procedure Give_Inlet_Air_To, for the Burner Object Manager,
takes the pressure, temperature, and air flow as arguments.

The third type of operation is used to read an object’s outputs. The outputs are cal-
culated by the math model using the environmental effects placed on the object and any
additional constraints imposed by the attributes and the operational state of the object. The
math model may be invoked when external effects are placed on the object or when outputs
are read from the object. The naming convention for this operation is
Get_<object_output>_From. The operation takes the object private type as an argument
and returns the object’s outputs. In Figure 4-2, the procedure Get_Discharge_Air_From is
an example of this type of operation.

The characteristics of the Get_<object_output>_From operation are as follows:

o the response reflects the current state of the object. The state is dependent on
the environmental effects previously placed on the object, the object’s attributes,
and the object’s operational state. The outputs are read from the private data
structure or calculated from the values stored in the data structure.

e the output state of the object is consistent with the external environmental ef-
fects at all times.

e each operation is specific to the object and the output of the object that it reports.
This operation is the only way to access the object’s output.

The interfaces defined by the Get_<object_output>_From operations can be read
directly off the object diagram, Figure 4-1. There should be one procedure per dependency
arrow. For example, in Figure 4-2, procedure Get_Discharge_Air_From, for the Burner
Object Manager, returns the pressure, temperature, and air flow.

The output state of an object, determined from its environmental effects, attributes,
and operational state, may be calculated either when new external information is written to

CMU/SEI-87-TR-43 17

O N A AN N R N R N R R AN A S A ST .
R N e e e e e T e e AN .
N A A AN AN, N O N A AN AR A V)

‘i
2 & 5)

L4 4
s

.

the object (and then the output state should be stored with the object), by the
Give_<outside_effects>_To procedure, or when outputs are read from the object, by the
Get_<object_output>_From operation. In the first case, each time an external effect is

deposited, a new output state should be calculated and stored so that the correct output state .
can be returned on subsequent read operations. Since each external effect is independent of .
all others, the object’s output state will be consistent at all times. In the second case, an
object’s output state is not stored, but calculated each time the outputs are read. The deci-
sion as to which implementation to use is up to the implementor of the system. That level of
detail is not specified in the paradigm.

— -
4 s

ket

AL,

oY

4.2.4. Advantages of the Object Abstraction

The implementation of objects as described in this chapter follows the standard model
for object-oriented abstraction. The object managers embody the state of the object, and
changes in the object’s environment are placed on the object procedurally. The major dif-
ference is the removal of connections from the objects (connections are described in Section
4.3). This decision supports separate development of objects since there is no dependency on
{ any modules other than global types. In addition, spaghetti compilation dependencies are

prevented. Finally, reuse is supported, since typing differences between objects is not an
15

RO S

18sue.

ey Ly

Another advantage of the object manager is to focus the addition of detail at one place.
For example, if there is loss of efficiency in the movement of air through the Burner, the loss
can be modeled in the object manager for the Burner. Also, malfunctions in components can
be simulated in the objects. The introduction, handling, and reporting of a malfunction
should be introduced at the object manager level.

R a PSR

g N
.

el ot

4.3. Connection Abstraction

Objects are represented by the implementation scheme described in Section 4.2. At
that point one has a pool of isolated objects.

' This section describes connections, i.e. the mechanism for transferring state informa-
tion between objects.

: 4.3.1. Overview of Connections .
Software connections model real-world conduits. g

The connection between the engine objects in Figure 4-1 is represented by the heavy
line labeled Engine Casing. The arrows in the diagram represent dependencies. The ar-
rowhead points in the direction of the dependency. A double-headed arrow represents de-

. .-
S laa

pendency in both directions.

i
4

o
A
-_n s

'80ne of the roles of connections is to convert types when necessary, see Section 4.3.

s

18 CMU/SEI-87-TR-43
u(-.(::";--,x{;—,_—'.'-.,. O L O A b 1 A Lttt o
o, e e Kl e _"l N, e LN A LN N O S g

¥o <
A
\

-

<
:: Connections are also used to capture the passage of time. The software clock can be
? E viewed as another system, external to engines, which makes the current time (or elapsed
A time) available via a connection.
_- ".:f Connections provide a means to transfer information between buffers and software
g objects. The buffers may be a linkage buffer between the software and the simulator
l‘ ‘ hardware, an Instructor Operator Station (I0S) buffer between the software and the 10S
N station, or buffers between processors in a multi-processor configuration. In all these cases,
- - the connection handles the transfer of environmental effects or operational state information
i : from the buffer to the software objects and the transfer of object state from the software
S objects to the buffer. For example, software lights in the electrical system can be turned on
F' and off as a result of external environmental effects or operational state changes. These
- effects must be transferred to the simulator cockpit and affect a change in the hardware
f: lights. Lights can also be turned on and off in the simulator cockpit by the students. These
. effects must be transferred to the software and change the operational state of the software
- lights. The linkage buffer between the cockpit and the software is used and connections
i o handle the information flow.

J _T Finally, the updating of a system is accomplished by moving information along connec-
. tions.

: 4.3.2. Procedural Abstraction

n Objects are oblivious to their environment. An object manager stores environmental

s effects and operational state information and provides access to the object’s outputs.

The operations defined with the object allow for writing information to the object and
reading information from the object. See Section 4.2.3 for more discussion on the object
. operations.

The connections between objects are captured procedurally, using these operations. All

. - connections between objects within systems and between systems are modeled the same way.
Pl The connecting procedures exist outside the object managers, but have visibility into

OOy the object managers.

A

0, v

‘O The connecting procedures need to perform three steps:

K. ¢ obtain the needed information directly from an object

! e convert the information if necessary

¢ put the information directly onto another object.

v_.
'l.l"

] CMU/SEI-87-TR-43 19

{
o
"
o
J = 1
w
4
L]
4
»
»

A S0 Sl Bl AL Al A el S A S

o
~
1\:
Q
3
l‘ -- F
- y
v A

Each step is discussed in more detail in the following sections, 16

Al .k

4.3.2.1. Get Needed Information

The initial step is to obtain the external information which must be placed on an ob-
ject. The provider of the information is defined within an object diagram at the head of each
arrow, as in the Engine diagram, Figure 4-1. The provider will be either an external system,
e.g., the Fuel system, or another object within the Engine system. If the provider is from an
external system, the procedure modeling the connection must have access into the objects of
each system. Thus the procedure needs to exist at the next higher level of abstraction, i.e.,
within the enclosing executive. Within the executive, local variables may exist to allow for
temporary storage of the information, as in Figure 4-3. The current value of spark, from the
Ignition system object manager, is obtained with a call to Get_Spark_From and stored in
the local variable Some_Spark. Thus, although the paradigm does not advocate careless
typing, it recognizes that perfect type matches will not always be possible.

-

Su” gt

If the provider is from another object within the Engine system, then the enclosing
scope of the objecis, i.e., the Engine system itself, handles the connection.

4.3.2.2. Convert Information

The connecting procedures encapsulate type conversions. Each object manager main-
tains the state of the object in the units which make sense to that object. The connecting
procedures handle the type conversions which are necessary between the object managers.
In Figure 4-3,!7 the intermediate value, obtained during the get information step above, is
converted to the proper enumerated type, as understood by the Burner object manager, by
the function Spark_Conversion. :]

There are two reasons for managing type conversions within the connection procedure.
First, the object managers are then free from inter-object type dependencies. The object
managers become stand-alone, with no dependencies other than on giobal data types. Thus,
the object managers become reusable units. Separate development of the object managers is
also supported. The second reason is that each object manager has a different need. There is
no reason to expect that the Burner object manager would have a need to know how the
Ignition object manager maintains the spark state. For example, the spark from the
Ignition system may be in volts while the Burner maintains the value as an enumerated -
type (see Figure 4-3).

=z ZAR

kz

1856 far, the discussion has focused on the simple case of two objects per connection. For a connection with .o
multiple objecta, e.g., the connection between the Rotor2 and the five external systems in Figure 4-1, the steps -
above expand to include each object:

 obtain the needed information directly from all objects
e process the collected information and convert if necessary

¢ put the information directly onto all objects.

"The notation used in Figure 4-3, Engines(An_Engine).The_Burner, is part of the Engine Aggregate y
nomenclature discussed in Section 4.4.1. ,

20 CMU/SEI-87-TR-43

g™ gy M Wy o I I A A L LS L T LS ST ORS
_\.__:v\ -s..):._(.-s.k. \ e N T N e N A NNt

... . e e vl
l'*' s AL S A P
J(""n""([/m‘. 'h: A
ot i 'l AN I n

procedure Process Engme Connections_To (

A_Subsystem: in Flight_Subsystem_Names.Name_Of_A_Flight_Subsystem) is

- A local variable is defined to store the value spark when it is read from
- the ignition system. This is a convention, described in the SEI Ada

-~ Coding Guidelines, to restrict the spread of embedded function calls, i.e.
- function calls as parameters within other function calls.

Some_Spark : Ignition.Spark;

function Spark_Conversion (In_Spark : in Ignition_Object_Manager.Spark)

return Burmer_Object _ Manager Sparku

o ad S AL L]

-1
- | Description:

-1 This function performs a type conversion. [t converts

—~| the spark from the Ignition to a spark that the

—~| Burner_Object_Manager can accept. This is done

~| asan example of how the type conversions can be used to
-1 connect objects which either communicate through a

—| valve/regulator, or need different grains of coarseness of
-1 the information.

-1 In this case we are assuming that the Ingition system

—~1 needs finer information about the soark than the Burner.
-1

—~| Parameter Description:

—~1 In_Spark is the spark that the Ignition supplies.

—~1| return Spark is the spark returned for the Burner

case In_Spark is
when 0.2 => RETURN Burner_Object_Manager.None;
when 3.9 => RETURN Burner_Object_Manager.Low;
when 10..20 => RETURN Burner_Object_Manager High;
end case;
end Spark_Conversion;
begin

— get Spark from the Ignition and feed it to the Engine Burner.
Some_Spark :=
Ignition.Get_Spark_From (This_Ignition(Given_Engine_Name)),

Burner_Object_Manager.Give_Spark_To (
A_Burner => Engines(An_Engine).The_Burner,
Given_Spark => Spark_Conversion(Some_Spark));
- aﬁd so on

end Process_Engine_Connections_To;

Figure 4-3: Spark Conversion Routine

Also, within the connecting procedure modeling of flow, resistance, or friction between
objects is possible. For example, constriction within pipes or the presence of valves in a
connecting line might alter the flow. Since the connecting procedures are modeling the flow

CMU/SEI-87-TR-43

el b bW Sl

R e Tx Ox Do lp Lo e x n Y

A Lt o8h g Ny Yy 2 Wed foh

in the line, the variation in the flow along the line can also be modelled. The conversion that

! needs to take place is a change in the value of the flow rate.

':: 4.3.2.3. Put Converted Information

:: The final step is to place the external environmental information on the object being
: - updated. The information must be in the proper type to match the dependent object. Once
‘ again, a picture, like that in Figure 4-1, defines the destination for the environmental infor-
K~ mation. The procedure Give_Spark_To (Figure 4-3) is an example of a put information
N

operation.

- b
R

>

4.3.3. Advantages of Connections
The implementation of connections in connecting procedures, as described in this chap-
ter, provides a consistent and natural interface to the objects.

»

* i gn

v,
" The connections insulate the objects from compilation dependencies. Objects, subsys-
- tems, and systems become stand-alone. Each can be developed independently. Connecting
. procedures provide a firewall; changes in implementation to objects on one side of a connec-
) ¢ tion do not affect the implementation of objects on the other side.

Connections facilitate independent development and reuse. In particular, connecting
procedures provide a systematic way to handle typing mismatches. The type conversions
between objects are easily managed since the connecting procedures have visibility into the i

- OBy W e
P oo

objects.

Connecting procedures provide a consistent means of updating systems and objects. g

Thus, connecting procedures provide a means for specifying control flow. No extraneous
concepts or operations are required. The notion of connecting procedures handles all types of
interactions between objects. a

The connecting procedures provide a locus of control since all connections at an ab-
straction level are handled in one place.

Finally, the modeling of malfunctions is facilitated, i.e., they can be defined easily and
implemented just like any other connection between two objects.

Ll T b Sk B Jab Jaeg

4.4. Subsystems and Systems

To this point we have defined objects and the connections between them. This section
discusses a method for grouping the objects and connections together into a logical scope.

A subsystem is an aggregate of objects and the connections between the objects. The
objects are accessible by name outside the subsystem, as discussed below. The connections
among the objects are hidden at the subsystem level, i.e., no higher level has any knowledge
: of the subsystem connections.

A subsystem update involves the processing of the subsystem level connections, as
described in Section 4.3. No access is required to objects outside the subsystem.

22 CMU/SEI-87-TR-43

L T N A I T
Cu P SRR RV S S e e
- ..'_ 4 "J‘\f . - \'

Ly > T T O e YT P S

AN W™ o
NN

T A T e T T N e e e
e A A

P RR TR AETRETRTRTETR IR T TR T TR TETE T8 T e e e e Ty T T T T TN T I I I i N EIYEIT T I YT Y Y I EITUTIEINERNYWSNETRY T Y YU

ros

A system is a set of related subsystems. One example is the Engine system which

' consists of a group of identical but isolated subsystems, one for each engine. The same

objects are used in each subsystem; the connections to the outside world are different; and

) there are no connections between the subsystems. Another example is a simulator Electrical

f: system, which consists of related and tightly coupled subsystems. The same objects are used

B in each subsystem; the same kind of connections are used throughout; and each subsystem
depends on the others.

If there is only one subsystem, then the system and the subsystem are the same. A
- system can see only the objects belonging to its subsystems. The connections among objects
T in the subsystems that cross subsystem boundaries are the responsibility of the system and
are called system level connections.

I‘i All the subsystems in a system can be updated at the same time or individually. The
- update is initiated by an executive call to the system. If the system has more than one
Y subsystem, then a parameter is used to specify the subsystem. The system level connections
- to the subsystem are processed, then the subsystem is updated, as described above. No

access is required to objects outside the system.

4.4.1. Subsystem Aggregates
A real world system usually consists of collections of objects. An aggregate creates and
. names a collection of objects. An aggregate is a data structure indexed by the name of the
object. Objects are accessed by name. A procedure call is not required to obtain a "pointer"
to the object being accessed.

L 4.4.1.1. Building an Aggregate

As was described in Section 4.1, an engine is a collection of objects, including the dif-
u fuser, rotors, a burner, and so forth. Each object is managed by its own object manager. An
R engine record can be constructed as a grouping of these objects (see the
Engine_Representation in Figure 4-4).

package Engine_Aggregate is

-
'3 type Engine_Representation is -- Defines an engine representation
c record -- as consisting of an:

The_Diffuser : Diffuser; 1
. The_Rotorl : Rotorl; |
'-: The_Fan_Duct : Fan_Duect; i
in The_Rotor2 : Rotor2; :

The_Bleed_Valve : Bleed_Valve;

The_Burner : Burmer;

The_Exhaust : Exhaust;

end record ;
- end Engine_Aggregate; :
).
. Figure 4-4: Engine Representation Example ;
! 1 CMU/SEI-87-TR-43 23
::}:.},:; Py ',,: _,:,ﬁ;:r::f:};,p”‘,lv v 'c T KN :-;.;:;-(.;-;.;:;.;:._-;.:_;.'-f._:\:.,j ~4al \;A.;»}s;;_‘.",.::;\;,ﬂ.:,\;.:;;.:;’._:; ‘{‘:" .;"“,"'-"". ..‘;“]

L 2

For an aircraft as a whole there may be several engines. Using a constant array, an
aggregate of the engines can be created which stores references to
Engine_Representations, one for each engine on the aircraft (see Figure 4-5). The con-
stant array, Engines, is created at elaboration time. Each object is instantiated by a call to
the function New_<object>, described in Section 4.2.3, with all initial conditions set by
default. The pointer to the private type returned by the function is stored with the name of
the object. Thus, reference to the object can be done by name. The aggregate data structure
is visible so no procedure call is required to retrieve an object. The array is indexed by the
enumerated engine names Engine_1..Engine_4. The engine names are defined in a global
type package that defines all the subsystem names.

The constant array, Engines, is defined in a package specification to allow access to
the Engine system by an external system which withs the package specification and the
appropriate object managers. The aggregate and object managers are used by the connecting
procedures, discussed in Section 4.3.3, to reference the necessary objects. All references to
objects are done through the aggregates. An object in an engine is referenced as:
Engines(Engine_Name).The_<object>

For example, the Diffuser of Engine 1 is referenced as:
Engines(Engine_1).The_Diffuser

and the Rotorl of Engine 3 is referenced as:
Engines(Engine_3).The_Rotorl

The code fragment, in Figure 4-6, shows how to reference an engine object using the
aggregate.!® The Discharge Air is read from the Diffuser object using the reference,
Engine_Aggregate.Engines(Given_Engine_Name).The_Diffuser and written to the
Rotorl object using the reference, Engine_Aggregate.Engines
(Given_Engine_Name).The_Rotorl.

4.4.2, Updating

The existence of subsystems allows the processing of the enclosed objects to be done as
a unit. The process of updating a subsystem occurs in two steps (shown for an executive in
Figure 4-8):

¢ process the external connections and
¢ perform the subsystem update.

The operations are done atomically for each subsystem. This means that when it is time to
update a subsystem, all work necessary to complete both steps of the update is finished
before the process is begun on another subsystem.

Processing the external connections involves calling the connecting procedures, as de-
scribed in Section 4.3. The external effects, i.e., effects from objects external to the subsys-
tem, are processed by the connecting procedures at the enclosing levels.

18The Given_Engine_Name used to reference the objects will be passed as a parameter to the connecting
procedure performing the update.

1

v B X550 BAYd LLa wus MA

oo 0

-1
24 CMU/SEI-87-TR-43 =
<r .;\ﬁ;-;-.’ \j\."\'x;*l;-.;s"‘r‘\.‘kjw}\.:\' T N e TN G T s SR LN N L L S N SR SN N LN
e e LA - A :

0

LW

4

Rn G0N0
- 4 & &

“ BRI ;:‘-

2 oA »

- e e

K -
SN N

» &
J“ ‘J‘x} 4

..')l

« ¢ r o as

Ty «
' . '.-& -" .‘- l‘. I\)‘}

g

P i S A
e

i YRV NNNNITY 1)

v

19

-
i I P W

‘i‘,", e .

NN

| £

,.\&‘_ ﬂ‘-.-ws.

package Engine_Aggregate is

- Define an object which holds all 4 engines in the system and

-- initiglize them (i.e. all their parts).

Engines: constant array (Engine_l..Engine_4) of Engine_Representation :=

(Engine_1 =>(
The_Diffuser => New_Diffuser,
The_Rotorl => New_Rotorl,
The_Fan_Duct => New_Fan_Duct,
The_Rotor2 => New_Rotor2,

The_Bleed_Valve => New_Bleed_Valve,

The_Burner => New_Burner,
The_Exhaust = New_Exhaust
)

Engine_2 => (
The_Diffuser => New_Diffuser,
The_Rotorl => New_Rotorl,
The_Fan_Duct => New_Fan_Duct,
The_Rotor2 => New_Rotor2,

The_Bleed_Valve => New_Bleed_Valve,

The_Burmer => New_Burner,
The_Exhaust = New_Exhaust
)y

Engine_3 =>(
The_Diffuser => New_Diffuser,
The_Rotorl => New_Rotorl,
The_Fan_Duct => New_Fan_Duct,
The_Rotor2 => New_Rotor2,

The_Bleed_Valve => New_Bleed_Valve,

The_Burner => New_Burner,
The_Exhaust => New_Ezxhaust
h

Engine_4 =>(
The_Diffuser => New_Diffuser,
The_Rotorl => New_Rotorl,
The_Fan_Duct => New_Fan_Duct,
The_Rotor2 => New_Rotor2,

The_Bleed_Valve => New_Bleed_Valve,
The_Burner => New_Burner,
The_Exhaust = New_Exhaust
)

5

end Engine_Aggregate;

Figure 4-5: Engine Aggregate Example

Once all the external effects have been placed on the subsystem, then a subsystem
update is performed through a single procedure call, Update_<subsystem>, to the subsys-

tem.

For the Engine system example, all the subsystems, i.e., each engine on the aircraft,
are independent of each other. There is no information which has to pass between the sub-
systems. The only external connections which need to be processed are those from systems
outside the Engine system, e.g., the Fuel system. These connections are handled at the
enclosing executive level. Then a subsystem is updated, via the procedure Update_Engine,
with the subsystem as a parameter, see Figure 4-6. Performing the subsystem update in-

CMU/SEI-87-TR-43
~~ P * N Lo
'V“ Mi;f;ix.xA\ \‘f.\.'f\'_\i_ % .\{:{

25
R R A I ST v
A T L T AT AT AT A AT \\\j
l - Y
LR AN PN E ’._s'fzx_x'_glﬁ.is‘fLL;ij_\ afa

W rd

.

AL

- package Engine_Updater is
Y procedure Update_Engine(Given_Engine_Name: in Name_Of_A_Flight_Subsystem) is

Diffuser_Dhscharge_Pressure : Standard_Engineering_Types.Pressure;
. Diffuser_Discharge_Temperature: Standard_Engineering_Types.Temperature;
» Diffuser_Discharge_Air_Flow : Standard_Engineering_Types.Air_Flow;

s begin
b -
—~ Model the connection characterized by the dependence of the Rotorl
-~ on the Diffuser for Pneumatic_Energy. K

-

- NOTE, no type conversion is necessary because both types are based
- on Standard_Engineering_Types Package definitions.

-

Diffuser_Object_Manager.Get_Discharge_Air_From(!
A _Diffuser => Engine_Aggregate.Engines(Given_Engine_Name). The_Diffuser, ‘
Returning_Discharge_Pressure => Diffuser_Discharge_Pressure,
Returning Discharge_Temperature => Diffuser_Discharge_Temperature,
Returning_Discharge_Air_Flow => Diffuser_Discharge_Air_Flow f

I

Rotorl_Object_Manager.Give_Fanl_Inlet_Air_To{

A_Rotori => Engine_Aggregate Engines(Given_Engine_Name).The_Rotorl,
Given_Fanl_Inlet_Pressure => Diffuser_Discharge_Pressure,
Given_Fanl_Inlet_Temperature => Diffuser_Discharge_Temperature,
Given_Fanl_Inlet_Air_Flow => Diffuser_Discharge_Air_Flow

%

- z
-
P YRR RN

..I‘

e R
H

. end Engine_Updater;

Figure 4-6: Reference to an Engine Object using the Aggregate

volves processing the connections at the subsystem level. The update procedure is dependent
on the Engine Aggregate and the object managers. A fragment of the Update_Engine pro-
cedure is in Figure 4-6. The connection representing the dependency of the Rotorl on the
o Diffuser for air flow, temperature, and pressure is shown.

" 4.4.3. Advantages of Subsystems and Systems

-’.: The implementation of systems, as described in this chapter, encapsulates subsystems, A
)i objects, and connections within a logical scope. A system needs to access only its aggregated

objects, the global types used by the objects, and the internal connections.

This separation of concerns allows for several things:

e Minimum compilation dependencies. Subsystems and systems become stand-
alone. Connecting procedures provide a firewall; changes in implementation to '
objects in a subsystem on one side of a connection do not affect the implemen-
tation of objects in another subsystem on the other side.

e Separate development of components and reuse. Systems and subsystems are
self-contained. The only dependencies are on global types and object managers.

26 CMU/SEI-87-TR-43

METE N - -'-'q'-.‘<" '.'~_'.’.'- LI Y -
ol .' N D .f" AN ..-‘,'_‘.f\f

VYIS, VW, v I, W R .n*’a“gr.ghu..h&‘ ..,')M PVl YIRS WA Wy

PP n,-.. :.I:’"

Y v S

LN
h s
{v'.'
4
AN

Coe g e
o a1t e

ot
PP

LR .
AL IS -1.

.
o

558y
P

- -
ORAREESS

14

(4

AR

5 558
.l.l

@

,_",' A _:‘ - _n' Ay

LR T T Tt T)
v .

A
LN

ONSORN

-

o
[
iy
e
"
N
A
®

L

.
s W

s

¢ a potentially easy disbursement within a multi-processor environment (more on
this in Section 6.1).

4.5. Executives

An executive is a system consisting only of other systems. For example, the Flight
Systems Executive surrounds the Engine system, the Electrical system, the Fuel system, etc.
The executive controls the updating of all the systems within its scope. The executive
handles all connections between its systems, e.g., those between the Engine system and the
Fuel system. In a multi-processing environment, in this model, there would be one executive
level per processor. The executive would have buffers for communication between the
processors. However, the synchronization among the processors would happen outside the
executive.

with Flight_Systems_Connections;
with Flight_Subsystem_Names; use Flight_Subsystem_Names;
with Global_Types;

package Flight_Systems is

type Active_In_Frame is array (Name_Of_A_Flight_Subeystem)
of Boolean,;

Its_Time_To_Do : constant array (Global_Types.Execution_Sequence) of
Active_In_Frame:=
(Frame_1_Modules_Are_Executed => (Engine_1 => (True),
others => (False)),
Frame_2_Modules_Are_Executed => (Ac_Power => (True),
others => (False)),
Frame_3_Modules_Are_Executed => (Engine_2 => (True),
others => (False)),
Frame_4_Modules_Are_Executed => (Dc_Power => (True),
others => (False)),
Frame_5_Modules_Are_Executed => (Engine_3 => (True),
others => (Falise)),
Frame_6_Modules_Are_Executed => (others => (False)),
Frame_7_Modules_Are_Executed => (Engine_4 => (True),
others => (False)),
Frame_8_Modules_Are_Executed => (others => (False))
)

end Flight_Systems;

L T TS e}
R e e -t
LN

Figure 4-7: Executive Activity Table Example

4.5.1. Implementation of an Executive

All the subsystems within the executive's systems are known to the executive, as are
all the object’s in those subsystems. The executive has an activity table, indexed by the
subsystems, which defines an order for processing those subsystems. An implementation for
use within a cyclic executive is shown in Figure 4-7. The constant array, Its_Time_To_Do,
defines the frame in which each subsystem within the Engine system and the Electrical

CMU/SEI-87-TR-43 27

A I.-: :_.;J-:"

\v'-‘\‘\-'&

Ry

system gets processed. The processing is actually initiated by the procedure shown in Figure
4-8.

with Global_Types;

with Flight_Systems_Connections;
with Flight_Subeystem_Names; 1se Flight_Subsystem_Names;

with Engine_Updater;
with Systemm_Power_Updater;

package Flight_Systems is
procedure Update_Flight_Systerns (Frame: in Global_Types.Execution_Sequence) is

- | SRRBELSBBNVRSBBEIFRABVERPBPARIZPRGPRIBRBRNBLRBAP AR RERV SV E R EER Y
~| Description:

— 1t flight systems executive. Performs process connections and update
-1 as an atomic action for each subsystem.

-

-1 Parameter Description:

-1 frame is the current executing frame

- | Notes:
-1 none
— | SRSV PRS SRS ABRPRASVNFRPRAP RO BFBRGLABVDEBBUNBERERSBERP PGS RRG GRS S22
begin .
for A_Subeystem in Name_Of_A_Flight_Subsystem loop
if Its_Time_To_Do (FrameXA_Subsystem) then
case A_Subsystem is l
when Dc_Power. Ac_Power =>
Flight_Systems_Connections. y
Process_Power_Connections_To (A_Subsystem); 4
System_Power_Updater. "
Update_System_Power(A_Subsystem);
when Engine_l..Engine_4 =>
, Flight_Systems_Connections.
- Process_Engine_Connections_To (A_Subsystem);
- Engine_Updater.
:‘ Update_Engine (A_Subeystem);
- end case;
" end if; !
¢ end loop ;
) end Update_Flight_Systems; ;
end Flight_Systems; ‘
Figure 4-8: Flight Executive Example :1
The processing for a subsystem involves putting the outside effects on the subsystem
and then telling the subsystem to update itself. These operations for the subsystems are !
(done atomically. For example, in Figure 4-8, when it is time to update an engine subsystem, 4
¢ a call is made to Flight_Systems_Connections.Process_Engine_Connections_To. This
v procedure accesses the engine objects directly, using the engine aggregate, to write outside a
) !
3
‘ “
K
! 28 CMU/SEI-87-TR-43 2
o
‘('['I.'f.c' R g R RIS T 7 - SO ' o N b N N WL LS LN
’;{:{'ﬁ{\,lﬁ_ﬁ ':'f.,'.', UL R o A L 1 s \V /‘l‘{v*' -

U N L I LU E T L T TR RTT R NIRRT TN AN . AT W UTW T T T e T W W TR R T N T N T T RN YETR T LAY LYLAEFAY LY UY O ONTS T T T Y R N S ""‘

‘ ‘,.,‘.f”‘ A

effects onto the engine objects. Figure 4-9 shows a fragment of a connecting procedure from
the executive level. The fragment reads the torque energy required by the Integrated
Drive Generator object manager in the Electrical system.

. Next, the procedure Engine_Updater.Update_Engine is called, for the same engine
- subsystem, to process the connections internal to that subsystem. When this operation is

finished, the engine subsystem update is complete and the subsystem is consistent with all
! its external effects.

- Integrated_Drive_Energy :=

~~ Integrated_Drive_Object_Manager.Get_Torque_From (

An_Integrated_Drive =>
Integrated_Drive_Generators(A_Subsystem)

Figure 4-9: Executive Connection Procedure Example

Integrated_Drive_Energy :=
Flight_Systems_Buffer.Get_Torque_From (

‘- A_Buffer_Location =>

Flight_Buffer.Idg(A_Subsystem)

Figure 4-10: Communicating with a Data Transfer Buffer

v,

4.5.2. Advantages of Executives

The implementation of executives described in this chapter follows the same model of
connections used at the system and subsystem levels. Additionally, the executive has
scheduling information in the form of an activity table which defines an order for processing

> its gystems. Using the activity table, tuning of the simulator system by balancing the sub-
~ system processing across the frames of the cyclic executive is simplified.
< Distributed processing can be handled easily by partitioning executives across the

available processors. More discussion of this topic is in Section 6.1.

4.6. Advantages of the Architecture of the Paradigm

The two main design goals for the paradigm were to eliminate unnecessarily layered
objects and to simplify dependencies among objects. Both goals have been met.

The structure of objects is flat. Connecting procedures—the means, within the para-
digm, of accessing states of objects—at the executive level can access all objects in systems

o
under the control of the executive. Objects are accessed by name through the data structures
s which aggregate subsystem objects. A procedure call is not required to obtain a "pointer” to
e the object being accessed. e assert that the solution is natural. A spark goes to a burner,
not to an engine.
-
g CMU/SEI-87-TR-43 29

‘e e "m e N " T e e T " e " S T T N R) - " - R - - N W » - " - oW L) - » . - -
s o Lt N S LN OO (R 0 N AT TRt

LR LR NA R LR TS

':'.". . ".A'. '.'.'. '.'.’

£
oINS e

A LAl A T

R P

>

The abstraction of higher-level objects, such as engines, is captured in the notion of a
system, i.e., a set of objects updated as an entity. The benefits of nested objects are retained,
i.e., high-level objects can be updated and reused as a single entity., This abstraction coupled
with the approach to processing connections facilitates multiprocessing. Placing a set of
systems on a separate processor requires only creating an executive for the processor and
making minor changes to the executive-level connections to the system. None of the system-
level code changes.

The major difference between this paradigm and other object-oriented paradigms is the
use of connecting procedures to propagate changes. Connecting procedures allow objects,
subsystems, and systems to standalone. Each can be developed independently. Connecting
procedures provide a firewall: Changes in implementation to objects on one side of a connec-
tion do not affect the implementation of objects on the other side.

Connecting procedures facilitate both independent development and reuse. In partic-
ular, connecting procedures provide a systematic way to handle typing mismatches. It is
desirable, but not always possible, for two connected objects to use the same types to commu-
nicate. Similarly, connecting procedures are a convenient way to adjust the performance of
flight simulators to the expectations of crew members.1?

The software partitioning of connecting procedures simplifies compilation dependen-
cies. All access to objects happens through connecting procedures. Thus, it is only the
procedures managing connections to a subsystem that need to be recompiled if an object
manager specification changes. Each of these is implemented as a separate procedure.

Connecting procedures provide a consistent means of updating systems and objects.
Thus, connecting procedures provide a means for specifying control flow. No extraneous
concepts or operations are required. The notion of connecting procedures handles all types of
interactions between objects.

The paradigm produces software that is easy to modify. Typical modifications include
adjusting the distribution of processing among the frames of a cyclic executive, adding mal-
functions, adding or removing objects, and modeling wear and aging of components. Ex-
amples of some of the potential modifications are:

1. moving the update of a subsystem to a different frame requires a change only in
the executive’s schedule table

2. adjusting the air flow for one of the systems using air flow can be done in the
connecting procedure without worrying about side-effects in the other systems

3. adding a malfunction to an engine component, the burner for example, requires
only the following:

For example, referring to Figure 4-1, consider the five-way connection passing torque and rpm between Rotor2
and five external systems. The connection procedure provides an easy locus to modify the effects on one of the
external systems without affecting the other four. Typical implementations must be very careful that changing the
communication mechanism doesn't perturb the way all the systems react.

CMU/SEI-87-TR-43

I U N
A AT

Rt LA AP A -_,_\‘...;_.
- » » . . » » - - » - - » - qk . .- s
P PEPE PL PR PR AL AT PUC . RN AL S I P A0 R I AP

v . ‘l‘ -“ -\ ..'u'»‘-‘ T ~ ™~
L R S T Y
P A L AN VP S

PR
AT

[

__ m— A smmeam

RS SV REGELE d WL S Tl ol Saft Sull "ol Sad Salle 0V 200 T M IR e A* A AP B Wit il i b R Ae® et A gl A0 ML gin SR S R A A Aol A A Ini e AGAR A IR AN At A0y "4 |

a. making the malfunction selectable at the Instructor Operator Station
(10S)

b. adding a connection from the I0S buffer to the burner
c. changing the model of the burn:r.

4. the major math models of the engine need not be disturbed by changes; adding
a third compressor stage to the engine requires only creating the object in soft-
ware and changing the model of the casing accordingly

5. modeling function in a rotor due to wear on a bearing requires adding the inter-
face Time_Has_Passed (Amount: Time) to the object, making a small change
to the private type, and reducing the efficiency of the rotor in proportion to its
time in service

6. adding a malfunction to a connection, e.g., the line to the burner, requires creat-
ing an object to save the state of the line and a connection from that object to
the I0S buffer.

* CMU/SEIL-87-TR-43 31

N
t'x"-.’ e

s + S T AT AT T G TN T N L A T S \ R Y R
‘ (Y ‘o J‘\.* J“‘./' ’\"'\’ .a_\'r\.r“.r .r,_) ‘.r_ NACSCAS . A A R A PO St \ r .r > A A
o v ‘M..‘.i‘ AV,

vy
AR

1

e

T

~¥r »
PR

v
I._L

14

5. Development Process

5.1. Role of the Paradigm

The development of systems using the paradigm is a design activity. The paradigm
molds the designer’s analysis of the requirements. The paradigm accommodates objects and
connections. The result of the analysis of the requirements is a set of real-world objects and
connections grouped into subsystems and systems. Once this choice is made, the paradigm
dictates the implementation.

The paradigm can be viewed as a means of consistently specifying objects, connections,
subsystems, systems, and executive-levels. The result is a consistent implementation. Main-
tainers do not need to learn the architecture of each system. If the paradigm is followed, all
systems will look the same.

During acquisition, the architecture of each system does not need to be evaluated. The
quality of the architecture that follows from the paradigm needs to be evaluated only once.
Design reviews can focus on the analysis of requirements, the choice of objects and connec-
tions, and the subsystem and system groupings.

5.2. Templates and Reuse

The software architecture defined within the paradigm consists of levels of abstraction.
Each level, e.g., object manager level, subsystem level, system level, and executive level, has
defined software components: object managers, updater packages, aggregates, and connec-
tion packages.

Each of these components is similar across different systems. This similarity can be
exploited to create reusable templates for each component.

The templates contain the general features of the component, with place-holders for
the specific features. Appendix B contains a complete objec* manager template. The
template uses the notation <object> as a place-holder for the name of the object. The nota-
tion <attribute_x> is used for expression of operational state variables and attributes. The
object operations are expressed in similar terms (See Figure 5-1).

32 CMU/SEI-87-TR-43

R pTe e :,.:_,_:,"}_:,-.:/.‘i__?_:\" .""-_;-_:’-_:l-‘.:’:.'/:. S ; v :f_r'-"._.'.,\,;_.:\'\ \'r'\f'\: '\‘(‘ > ' \-(‘-‘c!‘ -\‘_-\. AT AT “’q
A AL P PP R R N N N A R Y N VIR ﬁwmmkﬂ-mm

.

b

j LPLFY

ssC L b

4.,

Ty

I e
Y

function New_<Object> (
<Attribute_1> : in <Object>_<Attribute_1>;
<Attribute_2> : in <Object>_cAttribute_2>
) return <Object>;
e | HBBURBRESESREB RSP RS ERRR P RE RGBS AG B IR BB AP USRI B AR R RE R AR GRS
--| Description:
—~1 creates a new <object> as a private type.
-1
-\ Parameter Description:
-1 <attribute_I> ...
-~ <attribute 2> ...
-1 <object> is the access to the private data representaion.

e | R BBBBRGERE IR R RDBRE B BB AR ERIR BB RGP SRR E S RGP R AR R RN GG R RA ARG E NN

procedure Give_c<State_1>_To (
A_<Object>: in <Object>;
A_<Object>_Side: in <Object>_Side_Names;
<A_State_l>:in <State_Type_1>);
-— | L2222 222222 R 2 222 a2 22 2222222 22222222222 2222222222 2]
-1 Description:
-1 places <state_type_l> on a specific side of a <object>.
-1
—~| Parameter Description:
-1 a_<object> is the <object> being acted on.
-1 a_<object>_side is the side of the <object> to be updated.
-1 <state_type_I> is declared ...

-— | NEPBEBRGREFRRBFR RSB EE GRS RGERERR PG QRO LGRS R B RNER QIS S E P LSRG R SRRSO

function Get_<State_1>_From (
A_<Object> : in <Object>;
A_<Object>_Side : in <Object>_Side_Names
)return <State_Type_1>;
- , EL L2222 2222222 2222 A 2] 2 22ttt 22 22 Y 222 222222 222222 F Y3
—~| Description:
-1 Reads <state_type_l> available at a specific side of a <object>.
-1
--| Parameter Description:
—-1 a_<object> is the <object> being acted on.
—~1 a_cobject>_side is the side being queried.
-1 <state_type_l> is declared ...

- | AR RBERNG LN EG LR RSB BBRR IR GBGRBRG IR N RN SRNORRG S PO RUE RGNS S

Figure 5-1: Object Manager Template Example

The templates are not intended to contain all the necessary details for generating a
complete version of the code. They are intended as a starting point. The framework for each
object manager, update package, connection package, and aggregate is similar. The details

are different. Package bodies and subprogram bodies are provided within the templates. The
implementor provides details within a template’s framework. The resulting components will
have a similar look and structure. This will aid readability, understanding, and mainte-

nance.

CMU/SEI-87-TR-43

L S e PR S L AR R T o I A R SR TR R)
e R i R O A T S S PR
O A I "__. 7 \\- _'\.__/_. T

5 d '@ Bl el Sl B et Sat Ba® Sa® it s A ol 00 ot 2 " el s .
Ll ah b aal 4l ges dug e Ble Bl B uva g ia el ‘el S0 S0 Sat sad Sa¢ Av e’ Sa* et ANTaN AL SN AN S LA Wit Al il L ST RE, i e B SRR AN) |

N K>
e Ca

¥ -
l"

5.2.1. Diagram Parsers
Several commercial tools have the capability of parsing diagrams and generating code
templates to varying levels of detail. The detail is limited by the diagram notation.

i

The dependency diagram, Figure 4-1, is typical of a diagram for which a parser could
be written. The parser could generate the templates discussed earlier. We view this as a
natural extension of the paradigm toward a more automated solution.

RESSNWMS G
12,

‘-.n

5.3. Enhancements to Object/Connection Diagrams

L;
r

Atk

The notation used on the object diagram, Figure 4-1, reflects the dependencies between
objects and state information. It defines the connections necessary to construct the system.

o

Several extensions to the diagram notation can be envisaged. One would be to
delineate the processing order of the connections. The heavy line, labelled Engine Casing,
is intended to represent the internal connection between the engine objects within the engine
system. It is the connection through which the air flows as the air passes through the
engine. Each object has some dependency on the air flow, as it passes through the connec-
tion, denoted by the arrows into the connection. Nothing on the diagram denotes the order of
connection processing. There may, however, be a specific order necessary to insure a consis-
tent state of the Engine system.

Another extension would be to add pointers to algorithms. The algorithms, expressed
in pseudocode, could be inserted in package bodies by the diagram parser.

LA

A1)

¥
< 5L

s

“y Ty
£30)

(

Ll

8
-

34 CMU/SEI-87-TR-43 z

T T T S ST SO U N O TR U NS P
PATIT AT N A A N I AT AP P AT S ey ol oW
A R A S A LR O N S A S SR AN
E..‘-r'.‘.'r.‘f._-r. A N T R A S A e e vy 2y

|

N

Lo]

AR

6. Open Issues

6.1. Distributed Processing

One of the design goals of the paradigm was to facilitate spreading the work load over
multiple processors. The description that follows encompasses our theories on what would be
required to distribute the processing over several processors. We have not implemented or
tested any of these ideas.

The paradigm begins with the notion of an executive. An executive controls the update
of a set of systems compiled together and thus running on a single processor. The paradigm
assumes that there will be more than one set of systems and that multiprocessing will be
involved.

The abstraction of higher-level objects, such as engines, into systems allows a set of
objects to be updated as an entity. This abstraction coupled with the paradigm’s approach to
processing connections facilitates multiprocessing. Placing a set of systems on a separate
processor requires only creating an executive for the processor and making minor changes to
the executive-level connections to the system.2? None of the system-level code changes.?!

Communication between executives is handled by an abstraction called a buffer. A
buffer is some means of sharing data among separately compiled software.22 The paradigm
makes no assumption about how the operating system transfers data or how executives on
separate processors are invoked. For example, assume that the Flight System Executive has
been split so that some of its systems, e.g., the Electrical system and the Fuel system, are on
a processor separate from the Engine system. The executive that handles the Engine system

20A typical minor change is demonstrated in Figures 4-9 and 4.10.

BThere are many approaches to the solution of this problem. We do not intend to compare or delineate all
possible solutions. One other solution would be to have the generation of connection dependencies handled by
compiler pragmas. The effects would be the same, however. Our goal was to minimize perturbations to the
connection procedures.

21p our observations of flight simulators, a buffer is a record data structure used in the communication between
processors.

CMU/SEI-87-TR-43 35

.}-. . T yvy Lalla® Sas an" 200" ha ANt ot oS ol Sal Sl ded G A S0) .".‘i".v."‘.‘f‘:"f
-
N
AN
N needs to communicate with a buffer to get the environmental effects from these other subsys-
. tems. Figure 4-10 shows how communication between the executive’s connecting procedure
- and a buffer can be implemented.22 The fragment reads the torque energy required by the
::'f Integrated Drive Generator object manager in the Electrical system from the buffer. This
'{ is one of the changes required to implement a system on distributed processors.
T
\.
‘ N Another required change would be to load the buffer with the states of objects needed
I by systems on the other processor. All outputs required by systems on other processors must
A.‘x-
g be written into the buffer. This step would take place after the update of the subsystem, as
- defined in Section 4.4.2.
")
R One can imagine a development environment which automatically accommodates the
b distribution of systems across processors. The notations for the object/connection diagram
-:f could be extended to indicate which systems were to be grouped on a processor. The
- "address” of the object read by a connection procedure could be calculated at link time: The
::-:‘ choices would be an object or a buffer surrogate.
®
S \ L
2 6.2. Tuning
!
"y The construction of a system using the paradigm results in a product which is easy to
' -‘:' read, understand, and maintain. The performance of the system, however, still must fit into

the time constraints demanded by the application. The implementation described in the
paradigm (and embodied in the templates) is intended to be a starting point for a usable

<
: system. We fully expect that adjustment of some of the concepts may be necessary. For
':::: example, Ada allows an implementor to inline certain procedures and functions. The over-
:.:f head of a procedure call is saved. For many of the object manager operations, which are only
9 a few lines long and tend to be called frequently during an update, inlining may provide a
N significant time savings.
“
:.\ Another useful technique is that of combining effects. For example, providing multiple
WX parameters to a subprogram instead of making multiple subprogram calls. The implemen-
; ;‘ tation of the Engine system, described in Chapter 4, demonstrates this technique. Figure 4-6
o provides an example which shows three effects in each subprogram call.
' A second method for combining effects is to group like objects together. For example,
‘- in a simulator electrical system there are hundreds of circuit breakers. Each one has to be
2, updated with respect to the hardware linkage buffer on each cycle. Also, at each level sev-
._.— eral breakers have to be updated through their connections to other systems. One solution is
;:-- to create an object manager that handles groups of identical objects. A circuit breaker collec-
. :: tion manager would contain subprograms for dealing with groups of breakers at a time.
:;:: Thus, a single subprogram call operating on a group of objects replaces multiple calls each
. operating on individual objects.
7.
A
f: 22The figure contains the same example used in Section 4.5.1, Figure 4-9.
:
? 36 CMU/SEI-87-TR-43

‘l—l.l
LN
A

»
\ ,

!

2
L

=

.‘x;‘ Jit

-

v
2
.

e

[ol ol on ol o of
PhrLr Rt
AR

S
o g A

AnAn
e

)

S

6.3. Reposition and Flight Freeze

Flight freeze and reposition are two of the software modes of an aircraft simulator.

In flight freeze mode the simulator software state is frozen, i.e., it stops changing with
time. Communication with the simulator hardware must be maintained. Freeze may be
initiated by the instructor at any time during a training exercise when communication with
students is necessary.

The reposition mode is initiated by the instructor at the I0S when a particular train-
ing exercise is to be repeated. The communication between the simulator software and the
hardware is maintained, and new values for flight data are icaded into the software. After a
sufficient waiting period to allow the software to ramp to the new conditions, the simulator is
restarted.

The paradigm considers time to be an outside effect on an object. Thus, it might be
possible to implement flight freezes by controlling the time effects on objects. Similarly, a
reposition would be accomplished by using reposition connecting procedures. In reposition
mode, the executive level would connect systems to reposition buffers. A connecting proce-
dure would read from the buffer instead of the object it reads from during normal run mode.

We have not implemented or tested these ideas. However, we are convinced that the
paradigm does not complicate reposition and flight freeze.

CMU/SEI-87-TR-43 37

-,
54

LR P P MCRTR
'y -d"r.m-".-"{: e -“}-'}‘.A'.A".r‘.\\a ‘Ju"..‘\ “‘..A".;\L'\' h\¢\ '\

RS A N R o A Rl A At R R A ey SO
O A R o R AR A A A AT a2

7. Electrical System

An Electrical system in an aircraft provides electrical power to devices in other sys-
tems: Devices such as fuel pumps and valves in the Fuel system, hydraulic pumps in the
Hydraulic system, and air conditioning in the Environmental Control system. The systems
are able to function only if power is available. They, in turn, put their load, i.e., the amount
of current they require, back onto the Electrical system. The load is transferred back to the
generators, along the Electrical system buses, where a determination of possible overloading
takes place.

A subset of the Electrical system has been completed and tested. The code with accom-
panying documentation is available on request from the authors. The code illustrates some
concepts not illustrated by the Engine system example.

7.1. Additional Concepts

The Engine system, Appendix C, is complete through the package specifications. The
subset of the Electrical system is fully functional and has been thoroughly tested.

Several performance issues arose during the implementation. There are several
hundred circuit breakers in a typical electrical system. Each one has to be updated with
respect to the hardware linkage buffer on each cycle. Also, at each level of the software
several breakers have to updated through their connections to other systems. The sub-
program calls in each object manager were inlined in order to reduce the overhead during
update.

Grouping of like effects is also performed. Voltage and load conversion factor (lcf) are
updated together. In addition, voltage, lcf, and current are grouped in a data structure
which is used during all read operations from objects. Both steps result in fewer subprogram
calls.

The concept of updating a system as a unit means, to us, that all aspects of the system
update must be complete in the execution frame. The subset includes a tie bar, an electrical
bus which connects several other buses. In order to insure that the update is complete
within the frame, the tie bar is processed repeatedly in the frame. The number of times
necessary depends on the number of other connections to the tie bar.

38 CMU/SEI-87-TR-43

:

R Al ot = il it AU R A AN A S A S i 0t 2 B rat el den wg -y |

': Other issues that arose during the complete implementation included decisions about
g writing effects to objects and reading outputs from objects. For some objects, like circuit
- breakers, the external effects are written and outputs are calculated during a read operation.

For other objects, states are calculated when effects change.

The Electrical system consists of related and tightly coupled subsystems. The same

objects are used in each subsystem, the same kind of connections are used throughout, and

- each subsystem depends on the others. Thus, unlike the Engine system, there are connec-
™ tions at the subsystem level. The Flight executive updates the connections between other
systems and the Electrical system. The Electrical system then updates the connections be-

o tween its subsystems. Finally, each subsystem updates its internal connections. The multi-
level updating cries out for the creation of object managers for collections of objects. We have
-, chosen not to implement these; they arc left as an exercise for the reader.

The Electrical system object/connection diagrams look like circuit diagrams. Given a
. library of objects and a diagram parser, one could fully automate the production of code from
r- a drcuit diagram.

AT W AR T S T

w
»

l_ CMU/SEI-87-TR-43 39

e
a

%y

VLR R

S A AT N
Y YA Ecld lf;-m.hmbc:-(’mbr;&-a:&

Appendix A: Software Architecture Notation

The notation used to describe software architecture is a modified form of the notation
expounded on by Grady Booch in his book on software engineering with Ada {1] and his book
on reusable software components with Ada (2]. The notation used is true to the intent of
Booch’s notation. The vanations (i.e., extensions) are:

» we use reduced package, subprogram and task icons inside larger icons rather
than the object (or blob) icon

* we use object dependency arrows more subtly, to distinguish different types of
dependencies

¢ we have layered the diagrams, i.e., we show a diagram of top level dependencies
and then expand the bodies of the figures to show the next layers of detail

¢ we do not show the internal details of any reusable subsystem, package, sub-
program or task which is used.

One final note about the notation: The figures need not show all the fine-grained detail
of a package or subprogram. When the code of a package (or subprogram) is compared to a
figure associated with that package (or subprogram) there may be nested procedures or
packages not shown on a particular picture, or it may depend on a package not explicitly
shown in the figure. The guidelines for these cases are:

o utility packages or services are not shown (this includes things like text_io, reus-
able data structure packages, math libraries, etc.)

¢ the figures are meant to show the significant details at a particular level, not all
the details

e the definition of "a significant detail” is solely at the discretion of the designer.

Based on these ideas, Figures A-1 thru A-4 explain the meaning of each of the icons available
using this notation.

40 CMU/SEI-87-TR-43

A A

s

doatanl.

b Y

dded Akl edednt LudA

[N

F o

o ta

Yyy)

(SN

.ttt
v
"‘ t.

F o
a

.

.‘I.(\‘

Object Subsystem Object

Dependency

)

=<I=]
—

a b c

Figure A-1: Object, Subsystem and Dependency Notation

The object (or blob) icon, shown above in Figure A-1 (a), represents an identifiable
segment of a system, about which we have no implementation information.

The subsyvstem icon, shown above in Figure A-1 (b), represents a major system compo-
nent that has a clearly definable interface, yet, which is not representable as a single Ada
package.

The object dependency symbol, shown above in Figure A-1 (c), indicates that the object
at the origin of the arrow is dependent on the object at the head of the arrow. The origin of
the arrow indicates where the dependency occurs. If the origin is in the white area of an icon
(shown in subsequent figures), it indicates a specification dependency. If the origin i8 in the
shaded area, it indicates a body dependency.

CMU/SEI-87-TR-43 41

N N T P P

™ » » - - - - -
.(“_.r_r._.r\a_\.-\.f o

\‘h LA L ‘-'.'- \-,-J".('-

DO WU s

P XA

AL)

A

e
.
N

[] l'l.' l.‘. \“ "' st l.l
Lttt o l‘,l.‘,l.'l')%

£
]
it

Ull‘,/.l

MRS

AN

ll,l.l"
UL]

KA
et

AR R

r

SR000 Bs

Package Package Package
Specification & Specification Body
Body

a b c
Package with Package with Generic
nested subpackages nested subprograms Package

: L AN A 2N % 4 Fl
/ A 2 2 B 29 "f
n\

II/IIIJ P"

! s
ll"l’} hs

*
W
'Mﬁﬁﬁ 25

d e f

Figure A-2: Package Notation

The package specification and body icon, shown above in Figure A-2 (a), represents an Ada
package specification, the white area, with an associated package body, the shaded area.
This icon can be broken apart to show a package specification, Figure A-2 (b), or a package
body, Figure A-2 (¢).

Figures A-2 (d) and (e) are variations on the package icon which show greater detail.
Figure A-2 (d) is used to represent packages which have nested subpackages within the body;
if the small package icon were placed within the specification, it would indicate visible
nested packages. Similarly, Figure A-2 (e) illustrates the notation used for separate sub-
programs within the body of a package.

Finally, Figure A-2 (f) illustrates the icon used for generic packages. Everything dis-
cussed above in regard to regular packages can also be applied to generic packages.

42 CMU/SEI-87-TR-43

RN

J'-‘I-f'd‘ ---Pw"-f-._ \,,-'

.
Koy (st 5\“ AR rias)

[, 3

f\ f

I'

“ s’x“

'D \ . W
'h ", .\n"vf -('\il. !'. f J‘f‘-f,‘ '.".'

@

ol O L
AP S ot

’a

Subprogram Subprogram
Specification & Body
Body

a

Subprogram with Subprogram with Generic

nested subprograms nested subpackages Subprogram
[AR AR AW 4 "
’ 4
L f‘;y
‘ i
' v
’ ’:’
: i
TS,

Figure A-3: Subprogram Notation

Much of what was discussed previously in regard to packages also applies to subprograms.
The subprogram specification and body icon, shown above in Figure A-3 (a), represents an
Ada subprogram specification, the white area, with an associated subprogram body, the
shaded area. This icon can be broken apart to show a subprogram body, Figure A-3 (b).

Figures A-3 (¢) and (d) are variations on the subprogram icon which show greater
detail. Figure A-3 (c¢) is used to represent subprograms which have nested subprograms
within the body. Similarly, Figure A-3 (d) illustrates the notation used for separate sub-
packages within the body of a subprogram.

Finally, Figure A-3 (f) illustrates the icon used for generic subprograms. Everything
discussed above in regard to regular packages can also be applied to generic subprograms.

CMU/SEI-87-TR-43 43
o e C T L L R P R I T T g R ALV R L S COR S LR g -
"‘u\..,‘\ \'ﬁ. A Y WA A N T -J.,\._..'\.,\‘(\,\{_ .J_\'_a_,‘.“_ .‘a".r“-‘r“.r“.z__.r

. P
AL
AR,

T Aatl A% avh a-B A B A S s s Sad BB $oB So0 3o ol tal Sl Nl Salh Sel.N el
n

o ¥
A

s

L A
.
et

e a4 e

Task Task Task
Specification & Specification Body
Body

a2 %

Figure A-4: Task Notation

o

Again, much of what was discussed previously in regard to packages and subprograms, ap-
plies to tasks. The task specification and body icon, shown above in Figure A-4 (a),
represents an Ada task specification, the white area, with an associated task body, the
shaded area. This icon can be broken apart to show a task specification, Figure A-2 (b), or a
task body, Figure A-4 (c¢). Although they are not shown, nested package and subprograms
are represented in exactly the same manner as shown in Figure A-2 for packages and sub-
programs.

v
Wy

Ll

~

4 CMU/SEI-87-TR-43 3

o’ s

—%

PR Akl

“vo s a"a'®

LALA

»%)

W

~ r
2

"~
- s

[N N S

H

IR

.
'fra.’
. A SRS

Appendix B: Object Manager Template

e [RRRRLRENBRRSE R BB ER G SR RERR NI AR RGNV BA BB AR RA R PAER LRI CHE R SRR R RENR

—~| Module Name:

<object>_object_manager

- | Module Type:

-1

-1

Package Specification

~| Module Purpose:

implements the type manager for objects of type <object>.

--| Module Description:

-1
-1
-
-1
-1
-1
-1
-1
-1

-1

<object> is implemented as a private data type created by new_<object>.

Connections are connected to a side of an <object>; the sides of <object>
are <sides>. Operations are available to read power units

from and place power units on a specific Point to an <object>.

The external states of <object> are <attribute_1>, <attribute_2>.

These states are affected by actions other than the propagation of
voltage and current within the subsystem of which a given

<object> is a part. Operations are available to get and update

these states.

~-| References:

-1
-
-1
-
-
-1
-

-1

Design Documents:

User’s Manual:
none

Testing and Validation:
none

-1 Notes:

<object> is an element of an electrical circuit. Elements are
connected to Connections. A connection reads power available
from elements connected to it and propagates information to
elements. The element

retains information about conditions at all Points. The
availability of power to a Connection depends on the state of
the element and conditions on the opposite side of the element.

--| Modification History:

ddMmmyy author Created

--| Distribution and Copyright Notice:

TBD

- | Disclaimer:

"This work was sponsored by the Department of Defense.

CMU/SEI-87-TR-43

"

St :;-:,- .r::.-' .r"./ L '7'.- ot .- AN, I :\.'-\.- .r‘-A\.- a\.-r‘f.'*"‘ 4'-,"_

o

45

o J‘-('-.-
J‘".r

'H

W,

[

‘-

3

Y

F I T

-«

i

-
-
[

g

Tue k‘..';'v-:‘- LA, ~

——

v
PP M

e F P -

- The views and conclusions contained in this document are
- solely those of the author's) and should not be interpreted as
- representing official policies, either expressed or implied,
- of the Software Engineering Institute, Carnegie Mellon

- University, the U.S. Air Force, the Department of Defense,
- or the U.S. Government.”

T T P TP T PP ST PP T PP PP
with Electrical_Units; use Electrical_Units;
<package Object>_Obj ect_Mangger is

type <Object> is private ;

type <Object>_Side_Names is (<Sides>);

type <Object>_c<Attribute_1> is ...;

type <Object>_cAttribute_2> is ...;

function New_<Object> (
<Attribute_1> : in <Object>_cAttribute_1>;
<Attribute_2> : in <Object>_<Attribute_2>
)return <Object>;
- R L2 22 L2 22 R L2 a2 d 2 222 R 22 eI 2222 e 222222 22T Y Y
--| Description:
-1 creates a new <object> as a private type.

- | Parameter Description:

~i <attribute_1> ...

- <attribute 2> ...

-1 <object> is the access to the private data representaion.
-~ |

- | VR RSN BRI SRR R RPAGCEAG BBV RSPV TGN GRS G R P AR S RBRRE RSB GE PGSR BINS

procedure Give_cState_1>_To (

A_<Object>: in <Object>;

A_<Object>_Side: in <Object>_Side_Names;
<A_State_1>:in <State_Type_1>);

-1
—~| Description:

—~1 places <state_type_1> on a specific side of a <object>.

-

~| Parameter Description:

—~1 a_<object> is the <object> being acted on.

-1 a_<object>_side is the side of the <object> to be updated.
—~! <state_type_I> is declared ...

e | RERSRBRPBAG PGS GRS B2 GEPSIN GBI RV S IR AR ES RS E SN G PSR NGR LSRRG VRS

procedure Give_c<State_2>_To (
A_<Object>: in <Object>;
A_<Object>_Side: in <Object>_Side_Names;
<A_State_2>:in <State_Type_2>);
-—] EL L LI L2 2222 2 Ly R 22 R 2222 2 22 22 2L a2y Yy Yy
—| Description:
—~| places <state_type_2> on a specific side of a <object>.
-1
--| Parameter Description:
-1 a_<object> is the <object> being acted on.
- a_<object>_side is the side of the <object> to be updated.
- <state_type_2> is declared ...

e [ROBRBVEGURNVBISES RIS LR ERGRGARRSEREHR RGP AR RABAGESURRNS R ORI RGO R RES

1]
Ped

L%

NP L]

3
CMU/SEI-87-TR-43 =

e P o TR e R K
NN A :f‘-&“v\ ".r“.r.r:.r"; f

WY

’D
. <,
Y). ~
b, A
L
, .
,~ function Get_c<State_1>_From (
(-, - A_<Object> : in <Object>;
{ ~ A_<Object>_Side : in <Object>_Side_Names
.-) return <State_Type_1>;
\. - EL 222222222 2R 2 2 2 2 2 L 22 2222 22 R aR iRl i 222 222 22 2222222222 Y222 222
{ .‘ . —~| Description:
‘ N -1 Reads <state_type_l> available at a specific side of a <object>.
ST -
. - | Parameter Description:
= -1 a_<object> is the <object> being acted on.
" - - | a_<object>_side is the side being queried.
>~ - -1 <state_type_l> is declared ...
’-l — ! L2221 22 222 L2 L2222 2P 22 2R R 2222 2 222222222 Y Yy
Y function Get_<State_2>_From (
¢ > A_<Object> : in <Object>;
z A_<Object>_Side : in <Object>_Side_Names
-) return <State_Type_2>;
\'D‘ [- - ‘ R 2222222 21222 2 2 22 2 2 22222 212222222 222 22 2 2y ETTYY
3 - --| Description:
A —1 Reads <state_type_2> available at a specific side of a <object>.
A:i r-,‘ -
L ALY -~ | Parameter Description:
’ ¢ = -1 a_cobject> is the <object> being acted on.

~1 a_<object>_side is the side being queried.
-1 <state_type_2> is declared ...

| REBEB BB BBBREE R PR BRG R LSRN B GG RS R BB B AR R RE R ERERE R R ARG ER SRS CR TS S

R e

e procedure Give_cAttribute_1>_To (
s A_<Object> : in <Object>;
(‘ <Attribute_1> : in <Object>_<Attribute_1>);
- . -— | RL 222 2 22 2 L2 22 222 2 2R 2 2 22 LIyl YT TITTYFYTT LT YT EY
] —~| Description:
S -1 Updates the state of <attribute_I> to correspond to current
S —~1 external conditions
-1
- —~| Parameter Description:
. —~ | A_<object> is the <object> to be updated
-1 <attribute_l> is the new <object>_<attribute 1>
-

— [FUPRVEGBEGGBERAPGRGRPRE GG D SPEGER PO R RN B GG EI IS E ARG SRR S RN E R SRS E G RSN

. &
-

«

LA
Sttt

“ts

function Get_c<Attribute_l1>_From (
A_<Object> : in <Object>
.) return <Object>_<Attribute_1>;

_: ". e GHEBP GGG ESGE RN ARG S GRSV BEE R VGNP RO RRBRROJA I RGP RGPS EEIDO RGN AN,
+ I
. 1 . S
.. --| Description:
-
.

--! reads the state of <attribute_1> to correspond to current
! external conditions.

hd
P

L4
. -
u’ --| Parameter Description:
~1 A_<object> is the <object> to be updated
-1 <attribute_l> is the current <attribute_1>

>,

¢
"' -
N \, :"- e | GEBPBBPBRGVEIRIBRRBERNBNC SRRV RP S IV UG GNP ERB RIS G ES S ER G S SRS IR S
.
»
a‘ - . .
- ;_ procedure Give_cAttribute_2>_To (
'. . A_<Object> : in <Object>;
v <Attribute_2> : in <Object>_<Attribute_2>);
‘J e | RBROQORBP NGOV PEPAERUG P IR RGP IAF PRSI R R A PRSP G S AP ER SR RI NGOG GO
4 L.
P --1 Description:
e -1 Updates the state of <attribute 2> to correspond to current
. -
-l
‘ -
LA CMU/SEI-87-TR-43 47
’

RN R e R R A N AT AT AT A AT ot et
VAR .'.(\"\"3:'."\" SN NN Oy e AL AT DTN

__.
O ‘.«[‘."‘-{‘-"'v

'1'_ d

S

Y

»~
R

"
S LAEESS

1

Ty

-
S

.

NS

LA '.x}

R

Pl
.
L]

Dl
P e

- -
e .

73

s sl Tl

-
¢
v,

A AR ATA A AT AR AR ali ik ok AR aR oML oRIUARAE Rt oRe® R AaV S bal ol Sl Sol Su® Bl JaS (S i £:8 S0 bl 08 A8 B 008 RO A Nl RN B R B i'V‘

-1 external conditions

-1

- | Parameter Des:ription:

-1 A_<object> is the <object> to be updated

—| <attribute_2> is the new <object>_<attribute_2>

-] BEBBEBBEREREREERRRERREEEE R AR ERGRERBEERARCRERGBR PSSR ERFRRER R AT SR

function Get_cAttribute_2>_From (

A_<Object> : in <Object>

)return <Object>_cAttribute_2>;
_[.......0”...’.’.....’..‘0...‘..0..’.0“..I.i.‘.”...&.".‘.‘..’ﬁ
--| Description:
—1 reads the state of <attribute_2> to correspond to current
~| external conditions.
-
- | Parameter Description:
-1 A_<object> is the <object> to be updated
—-1 <attribute_2> is the current <attribute_2>

-1

- | FRERERBARA G BB RE LSS SRR BB RSB RR B RS AR RRGRRE R R NS REE R ERRR B RE SRR G REN

private
type <Object>_Representation;
type <Object> is access <Object>_Representation;

end <Object>_Object_Manager;

R e e el e e e e D D e
pragma Page;

CMU/SEI-87-TR-43

\

. =) A Mt

Sedis .4

d

e

PR E WN
I R

g

f 2l Tl R}

-

s S —

[l by]

.

Il
oL

[N

’

..
-'1.:'

P

a
a

r

L'
.

(l

- ! FERRRERBBBUENQERERREEREPEFSREREFRERRELBJERASAFRRLLNIBAE4S 200202000

-1 Module Name:

-l <object>_Object_Manager

-

- | Module Type:

—| Package Body

-1

Py .-

—~| Module Description:
—1 Reads and manipulates private data structures that represent
-~ a <object>.

-

-1 Notes:
-
-
--| Modification History:

| ddMmmyy author Created

-1

-l
--1 Distribution and Copyright Notice:

-1 TBD

-1

--i Disclaimer:

~1 "This work was sponsored by the Department of Defense.

-1 The views and conclusions contained in this document are
-1 solely those of the author(s) and should not be interpreted as
- representing official policies, either expressed or implied,

- | of the Software Engineering Institute, Carnegie Mellon
-1 University, the U.S. Air Force, the Department of Defense,
—~| orthe US. Government.”

Ll 2]

<package Object>_Object_Maneger is

type Point_Representation is array (<Object>_Side_Names)of ...

~ representation of a <object>

type <Object>_Representation is
record
Points : Point_Representation;
<Attribute_1> : <Object>_<Attribute_1>;
<Attribute_2> : <Object>_<Attribute_2>;
end record ;

pragma page;

CMU/SEI-87-TR-43 49

T T N T T LT T N N U S N o SRS T

B O N RN R -.’ \‘:-.‘ \"‘\"\' \"N" W ."'\":t‘(~ o \'{: “\"x' *\"\)
. 3 X 8 N .

R fais Bn dnd el ind St salh Snd Rl Al tal tad =ad oyl tnl tah Wi iald taf Sal Vel cal St vall Sl Sah tal tal tal Sng N Lt el ta b Sl Sudky Sl Pl Sl Sl A PR PR el Y ..‘T'.".'-"_'-‘.'-—.'-".T

-’ \-
o
)
Vv
s
K ::4'
e s
p ::’ function Opposite_Side (This_Side : in <Object>_Side_Names
e yreturn <Object>_Side_Names is
- BREBBGR RSB PR RESBRREBEBRE NP ERECR RS R SRS EE LR ARG RN E GRS R RGNNSO
.\: --| Description:
Oy - A function to find the opposite side of a Point.
o -1 Requests for information about one side depend
e -1 on the state of the <object> and information kept about
e -1 the other side.
o -1
v ~| Parameter Description:
-1 this_side is the side for which the opposite is sought.
N -1 <object>_side_names is the opposite side.
- -
- -1 Notes:
2 -1 USED FOR CONTROL ELEMENTS SUCH AS CBs, RELAYs AND
- -1 SWITCHES.
- - e * 2222 2212 * * 2212227
-
F . - The_Side : <Object>_Side_Names := Side_1;
..,
<3 begin
\'J -
o) -- select opposite side based on what this side is.
N -
' if This_Side = Side_1 then
O The_Side := Side_2;
- end if;
k. RETURN The_Side;
end Opposite_Side;
2 function New_«<Object> (
- <Attribute_1> : in <Object>_<Attribute_1>;
o <Attribute_2> : in <Object>_<Attribute_2>
8)return <Object> is
- e o os
.o —~| Description:
i) —~| creates a new <object> and returns an access to it.
—-1
iy - | Parameter Description:
o —-| parameters are values for the attributes of <object>
e —~| <object> returned is an access to the private type.
s -1
i ./n: - | Notes:
S -1 uses the new operation to create record. The
® -1 temporary variable used to hold the access while
v -~ the attribute values or set makes the code
. ~| easier to read.
:'_ | e 22T ane . L1
y : The_New_Object : <Object> := new <Object>_Representation;
K-
g begin
o The_New_Object. <Attribute_1> := <Attribute_1>:
o~ The_New_Object. cAttribute_2> := <Attribute_2>;
K
o RETURN The_New_Object;
D .
) :::‘ end New_<Object>;
A8
|]
2 pragma page;
S
\
[]
50 CMU/SEI-87-TR-43
~

':f" AN .-‘r’f
\lﬂ,\l’vf'

“u A _,'“,‘. SO S ’-"r.l‘"
.r:'.ﬁz.(-rf«'ff , ‘-.,.. .

e

S
’

'1#"_ R

a a
T

‘l,'

. a_ a
[B

Al

3

o

| N

'] l“‘

2.

e

O

procedure Give_<State_1>_To(
A_<Object>: in <Object>;
A_<Object>_Side: in <Object>_Side_Names;
<A_State_1>:in <State_Type_1>)is
- | RERERRB AP E RS IR R AR R R ARG R AR AR B GREP RS R R R SRR ARG R REEERE RS
~| Description:
-1 places <state_type_I> on a specific side of an <object>.
-1
--1 Parameter Description:
-1 a_<object> is the <object> being acted on.
-1 a_<object>_side is the side to be updated.
-1 <state_type_l> is declared ...

PR L 2L AL A Lo Sl S LA e 222 L L2 L e 2222 22222222222 2222

begin
A_<Object>.Points (A_<Object>_Side).Xxx := <A_State_1>;

end Give_<State_1>_To;

procedure Give_<State_2>_To (
A_<Object>: in <Object>;
A_<Object>_Side: in <Object>_Side_Names;
<A_State_2>:in <State_Type_2>) is

| ow * P PUPPPPN AR RN EE SRk RN

-1 Description:

—~| places <state_type_2> on a specific side of an <object>.
-1

--| Parameter Description:

—~1 a_<object> is the <object> being acted on.

-1 a_<object>_side is the side to be updated

~| «state_type_2> is declared ...

— ‘na I T TY Y Y T

begin
A_<Object>.Points (A_<Object>_Side).Yyy := <A_State_2>;

end Give_<State_2>_To;

pragma Page;

e e el A S el il Al i A A A NA A A0 il e tAla i AR, S el ol Sl Sadh Bad d it b At sk il bl tabl it ol TW*’W‘

CMU/SEI-87-TR-43

TSR A L
» e -
o' -’_-J'_-I .L\}""'\-P'\ .

51

"'
N
-’

oL

function Get_<State_1>_From (
A_<Object> : in <Object>;
A_<Object>_Side : in <Object>_Side_Names
)return <State_Type_1> is

e | RERBRBERE SRS TSR EB SRR A RE RSP R RR R PRGN R G SR EG VIR RN RN EREE RIS

~| Description:

-

-1 Parameter Description:

-1 a_<object> is the <object> being acted on.
~| a_cobject>_side is the side queried

-1 <state_type_1> is declared ...

PR AR AL AL LA LS T2 P DTS2 2L 2T YT YN T2 Y 7 Y PP TTYY T Y YTy

The_<State_Type_1> : <State_Type_1>;

begin
if A_<Object>.<Attribute_1> = Xxxxxx then
The_<State_Type_1> := A_<Object>.Points (
Opposite_Side (A_<Object>_Side));
end if;

RETURN The_<State_Type_1>;
end Get_<State_Type_l1>_From;
function Get_<State_2>_From (
A_<Object> : in <Object>;

A_<Object>_Side : in <Object>_Side_Names
)return <State_Type_2> is

- |
-\ Description:

~| reads <state_type_2> available at a specific side of an <object>.
-1

--| Parameter Description:

-1 a_<object> is the <object> being acted on.

—| a_<object>_side is the side queried

-1 <state_type_2> is declared ...

-1 * *

The_c<State_Type_2> : <State_Type_2>;

begin
if A_<Object>.<Attribute_2> = Yyyyyy then
The_<State_Type_2> := A_<Object>.Points (
Opposite_Side (A_<Object>_Side));
end if;

RETURN The_<State_Type_2>;

end Get_<State_Type_2>_From;

-1 reads <state_type_l> available at a specific side of an <object>.

pragma Page;
g
U
3
-
52 CMU/SEI-87-TR-43 -
Se v v L R e L LTS LI e ‘o TSRS TN T T FUL IS W RTINS LTS N
".j\.").\' oo I{’.‘.:_-.."\.';, .',,*-:-.'_', :'x."' Lot "-.:-."\:\ ,\i\'.x'}. N I \’\:; T e T T Y
A HEL PRI LN AL PS¢ ALY, e s X " a

e e o

e
ot

M

PR
LAy

£
v RN

-

¢
A A A

3 5

procedure Give_<Attribute_I>_To(
A_<Object> : in <Object>;
<Attribute_1> : in <Object>_<Attribute_1>) is

-] CRPBRRBR RGO PEBEPRRPBRRBBEB BN RS C TSGR BB P AN SRS ERBER R RN S SRS SRS

—| Description:

| sets the value of the state <attribute_l> in the record
-~ | representing the the <object>

-]

- | Parameter Description:

-1 a_<object> is the <object> whose state is to be updated
—1 <aottribute_I> is the new <object> <attribute_I1>

-1

--1 Notes:

- | SPEBRPSER BB SRR RER BB GBEB S ENDERPGT LSS LRSI RERRRERAEARE R LS 2A RO RS

begin
A_<Object>.<Attribute_1> := <Attribute_1>;

end Give_<Attribute_1>_To;

function Get_<Attribute_1>_From (
A_<Object> : in <Object>
) return <Object> <Attribute_1> is

assanas —eavee P EEERERERRRE

- | Description:

—| reads the value of the state <attribute_l> in the record
-~ representing the <object>

-1

-1 Parameter Description:

—~1 a_c<object> is the <object> whose state is read

~1 <attribute_I> is the current <attribute_I1>

--| Notes:

--1 none

-1 a * *
begin

RETURN A_<Object>.<Attribute_1>;
end Get_cAttribute_1>_From,;

pragma Page;

CMU/SEI-87-TR-43

T T ey

procedure Give_cAttribute_2>_To (
A_<Object> : in <Object>;
<Attribute_2> : in <Object>_<Attribute_2>) is
— ' EZ Y222 222 Y222 2L P2 22 2222222 AL R R R A e R LA LY 2
--| Description:
-1 sets the value of the state <attribute_2> in the record
--| representing the the <object>
-1
-~ | Parameter Description:
-1 a_cobject> is the <object> whose state is to be updated
~1 <attribute_2> is the new <object> <attribute_2>
- |

-1 Notes:

-) L2222 22222 X2 22 e L a2 R iy R I R AL Ll

begin
A_<Object> <Attribute_2> := <Attribute_2>,;

end Give_<Attribute_2>_To;

function Get_c<Attribute_2>_From (
A_<Object> : in <Object>
) return <Object>_<Attribute_2> is
-— | BRRVSRRSPORRRE LRV ISR PRG SRS PRV INB R B LG F VSRV LR SRR R IRB GGG YR
- | Description:
-1 reads the value of the state <attribute_2> in the record
—~1 representing the <object>
-
- | Parameter Description:
-1 a_cobject> is the <object> whose state is read
~1 <attribute_2> is the current <attribute_2>
-1
-1 Notes:
~| none

-1

begin
RETURN A_c<Object>.<Attribute_2>;

end Get_c<Attribute_2>_From;

end <Object>_Object_Maneger;

R AL an vl ad dud ond Bad Snd Snd Sl Sl gad B AL an ath s il ol oW

~

AT W P FL R S S UL T

e ‘u " AP T R I
AL OO LTSN RN L

.- ‘D .’
s,

)
LY

CMU/SEI-87-TR-43 ‘d

S T U I P U ML IO PR P Or A Or S
-"\-F.'f_\f,\q \.‘-.-I‘.P. \-".‘f\.'.-f"n \-"\f\!\i‘\f‘. n

v, v
e i a % 2 e N
eI T L L N e T T (T A

. -~

Y
A A N

-

o
Ay

LR

Appendix C: Engine code

The Ada code that follows implements a simulator Engine system. The implemen-
tation is complete only through the package specifications. The intent is to demonstrate the
software architecture defined by the object paradigm discussed in Chapter 4.

C.1. Package Global_Types

. FRARBSBUTVAVRARNRPRR L FAGR LGSR GRS PR B ESRAPHOPEIRFRBRVI GGG SN ERG SN

- Module Name:

-1 Globo! Types

--| Module Type:

-1 Package Spectfication

~| Module Purpoee:

—-i provide global types for use throughout the simulator code

- ! Module Description:

-1 This package prouides global types for use throughout the simulator 2ot
-1 code. The types include those necessary for compliance with the -;\
- Boeing ASVP Ada code. - ,::
: ~
P >
- Type Execution_Sequence defines the frames to be used by the _-':-‘:
- executives during the cyclic execution of the code. s
-l “
| References: " ;,‘5_
-t Design Documents: Leavs
-1 none Ve
- o
-1 User’s Manual: ;._'f‘»_:
i none S
-l ®
—-1 Testing and Validation: G
-t none ‘.‘ s ._-'.
-t .-,::\:
~1 Notes: ..'.n-_'.
-1 none A
S S U U SO PN
~ s
—~| Modification History: ’ ‘
-1 24Apr87 ki created e
-t ,... ., _-,.'
e] e eu s mmr e ebam e meacmn s amnemenn e smarmn e nan A
-1 Distribution and Copyright Notice: e
-\ TBD P
-l v:",‘.
:.' >y
i)
w3
CMU/SEI-87-TR-43 55 el

-
>
/
e

A e M T e T R e e T T o W R Al D2

. «
2"a’ea ey

i B B T ‘

IR A

- | Disclaimer:

-1 "This work was sponsored by the Department of Defense.

-\ The views and conclusions contained in this document are

-1 solely those of the author(s; and should not be interpreted as

—~| representing official policies, either expressed or implied,

- | ofthe Software Engineering Institute, Carnegie Mellon University,

| the U.S. Air Force, the Department of Defense, or the U.S. Government.”

| CERERPS R RA AP RYB ARV LR E BB EPPEEBURERBO RSB ARSI RA LGSR ARG ERE 2 G GO NS

package Global_Types is

type Execution_Sequence is (
Frame_l_Modules_Are_Executed,
Frame_2_Modules_Are_Executed,
Frame_3_Moduiles_Are_Executed,
Frame_4_Modules_Are_Executed,
Frame_5_Modules_Are_Executed,
Frame_6_Modules_Are_Executed,
Frame_7_Modules_Are_Executed,

Frame_8 Modules_Are_Executed

b3

end Global_Types;

C.2. Package Standard_Engineering Types

| revsnuas Ry sanny SRR LRERO SRR RGNS

~| Module Name:

—~1 Standard Engineering Types

-

~| Module Type:

~| Package Specification

-1

-\ Module Purpose:

-1 This package defines some standard engineering symbols and units
—~| which are used in the Flight_System.

-1
- | Module Description:

—~1 The standard engineering symbols, their range and units of measure
~| are specified in this package. All objects and types in the

~ | flight_system which are represented in the real world in these units

~! should be derived from these types. New derived types can be expressed
~1 as follows:

~1 type My_Blark is new Standard_Engineering_Types.Blark;

~| References:

-1 Design Documents:

-1 none

~i User’s Manual:
-l none
-}

~1 Testing and Validation:
-] none

-

--| Notes:
-1 none

e .
--| Modification History:
-t 25Aug87 cpp created

-1

[IR SO

--| Distribution and Copyright Notice:

Ll -
P At 0
. IR I

A SN A

RAMCILAE auh aa

56 /s’

Sl IO O O N S OGN *-1\7.)\.&'(000&)(-’)&3‘0‘:3\’}.5\}‘&\;‘-14

CMU/SEI-87-TR-43

o I

o

'
A

L A

T

Kl

v
Tee

Pyl el
LS AR

——

N S N

-1 TBD

--| Disclaimer:

-1 "This work was sponsored by the Department of Defense.

-1 The views and conclusions contained in this document are

~| solely those of the author(s) and should not be interpreted as

-1 representing official policies, either expressed or implied,

-1 of the Software Engineering Institute, Carnegie Mellon University,

-1 the U.S. Air Force, the Department of Defense, or the U.S. Government.”

- P22 22222 2222 2222 L 22 b 2 Rl et LAt e L s

package Standard_Engineering _Types is

type Pressure is digits 6 range 0.0 .. 10000.0;
-- pounds per square inch

type Temperature is range 300 .. 3000;
-- degrees Rankine

type Air_Flow is digits 4 range 0.0 .. 500.0;
-- pounds per second

type Fuel Flow is digits 2 range 0.0 ..5.0;
-- pounds per second

type Thrust is digits 6 range 0.0.. 20250.0;
- pounds

type Rpm is range 0 .. 20000;
-- revolutions per minute

type Torque is range 0 .. 10000;
- pound feet

end Standard_Engineering Types;

C.3. Package Bleed_Valve_Object_Manager

E L
- | Module Name:

—~| Bleed_Valve_Object_Manager

-1

~| Module Type:

- | Package Specification

-1

- | Module Purpose:

-1 This package manages objects which simulate the

-1 Engine Bleed_Valve for the C-141 simulator.

| This management entails creation of Engine Bleed_Valve objects,
- ! update and maintenance of its state, and finally state

- | reporting capabilities.

-
--| Module Description:

--| The Engine Bleed_Valve object manager provides a means to create
- a Bleed_Valve object via the New_Bleed_Valve entry and returns

-1 an identification for the Bleed_Valve, which is to be used when

- updating/accessing the Bleed_Valve objects state as described below.

-1 The Engine Bleed_Valve object manager provides a means to update the
~ | state of the object via the:

-1 1) Give_Inlet_Air_Flow_To

-1 2) Give_Discharge_Pressure_To

-1 entries, requiring the following external state information:

- 1) Inlet_Air_Flow pounds per second

- 2) Discharge_Pressure pounds per square foot

-1 The Engine Bleed _Valve object manager provides a means of obtaining
--| state information via the:

CMU/SEI-87-TR-43

A S R R S A A A e AR G R e R RO R R
G A N A A A A AT
. » » L » [& » Ch + L) L) & L) A » 3 . » L4 L) » - »

iu"::r

-~

-1 3) Get_Inlet_Pressure_From

- 4) Get_Discharge_Air_Flow_From

- | entries, yielding the follo:wing internal state information:
-1 3) Inlet_Pressure pounds per square foot

-1 4) Discharge_Air_Flow pounds per second

-1

- | References:
-1 Design Documents:
-1 none

- | User’s Manual:
-1 none

~| Testing and Validation:

- none

~| Notes:
-~ none

- | Modification History:
~| 27Aug87 cpp created

- | Distribution and Copyright Notice:

-1 TBD

-

-~ Disclaimer:

- | "This work was sponsored by the Department of Defense.

-1 The views and conclusions contained in this document are

—~| solely those of the author(s) and should not be interpreted as

-1 representing official policies, either expressed or implied,

~1 of the Software Engineering Institute, Carnegie Mellon University,

—1 the U.S. Air Force, the Department of Defense, or the U.S. Government.”

ERBGRESRRGRNL

-1

with Standard_Engineering Types;
package Bleed_Valve_Object_Manager is

type Bleed_Valve is private ;-- a Bleed_Valve is an abstraction of a
- Bleed_Valve within a Engine.

function New_Bleed_Valve return Bleed Valve;

-
- | Description:

-1 This function returns a pointer to a new Bleed _Valve object
- representation. This pointer will be used to identify

- the object for state update and state reporting purposes.
-t

- | Parameter Description:

-1 return Bleed_Valve

-1 Pointer to a Bleed_Valve object.

- | SRBESRGHIBLBNAPLISRPREGSBIRBIRIRGG G GNP ERERRE RN AR E RSB ARIRE VSRR REY

P! XA

[y

procedure Give_Inlet_Air_Flow_To(

A_Bleed_Valve :in Bleed_Valve;

Given_Inlet_Air_Flow :in Standard_Engineering Types.Air_Flow
%
- l HOSPOBRCRBNNGLRBLQURNPEPNBENDBEE GNP RS RBPERBBG G AR APRGE VIS QG RIS R NG
-1 Description:
-1 Initiates a change in the specified Bleed_Valve object’s
-1 state given the Inlet_Air_Flow.

58 CMU/SEI-87-TR-43

PO W N N VNN S S

e

il

SOk [Ty« & PO <~

£

SR TR TS W TN AW TN

-1 Parameter Description:

- A_Bleed _Valve

-1 Identifies the Bleed_Valve whose state is to be changed.
-1 Given_Inlet_Air_Flow

-l Is the Inlet_Air_Flow, in pounds per second,

- which is to affect the state of the Bleed _Valuve object.

__|......‘..0......’.’....’O’...........l....t...........0.0."00..‘

procedure Give_Discharge_Pressure_To(

A_Bleed_Valve :in Bleed_Valve;

Given_Discharge_Pressure: in Standard_Engineering_Types.Pressure
%
"|..Q.O...‘........Q...’.0.....‘......‘.’.............’.........’..
-1 Description:
-1 Initiates a change in the specified Bleed_Valve object’s
-1 state given the Discharge_Pressure.
-

-1 Parameter Description:

-l A_Bleed_Valve

-1 Identifies the Bleed _Valve whose state is to be changed.
- Given_Discharge_Pressure

-1 Is the Discharge_Pressure, in pounds per square foot,
- which is to affect the state of the Bleed_Valuve object.

“l’..’...*...’Q..............Q...C........‘.".‘."Q....&..Ql..‘...

function Get_Inlet_Pressure_From(

A_Bleed_Valve :in Bleed_Valve
) return Standard Engmeenng_Types Pressure;
'—v L L2222 BRBBERREEREREGRSCRE BRSNS
—| Description:
-1 Initiates a report of the specified Bleed_Valve object’s
-1 state returning the Inlet_Pressure.
-1
- Parameter Description:
-1 A_Bleed_Valve
-1 Identifies the Bleed_Valve whose state is needed.
-1 return Pressure
-1 Is the Inlet_Pressure portion of Bleed_Valve object’s state,
-1 in pounds per square foot, which is to be reported on.

[o *ne unsy seen any

function Get_Discharge_Air Flow_From(
A_Bleed_Valve :in Bleed_Valve
)return Standard Engxneenng_'l‘ypea.Axr Flow;

| ey Uy Py

--| Description:

-1 Initiates a report of the specified Bleed_Valve object’s

-1 state returning the Discharge_Air_Flow.

-1

-1 Parameter Description:

- A_Bleed_Valve

.| Identifies the Bleed_Valve whose state is needed.

- return Air_Flow

-1 Is the Discharge_Air_Flow portion of Bleed_Valve object’s state,
-1 in pounds per second, which is to be reported on.

- | FRRPSSBNERIRBSUBSSS RGBS UBANAGRPPSRBG QBB ESEPRNSR S LSRR LR GRS ARINI S

private
type Bleed_Valve_Representation; -- incomplete type, defined in
-- package body
type Bleed_Valve is access Bleed_Valve_Representation;
-- pointer to a Bleed_Valve representation
end Bleed_Valve_Object_Manager;

CMU/SEI-87-TR-43 59
T A T T e T T T A e e A S T S e S N L S S . LY
N . L N A R BRI A it (J.
,.a.'u.n..fn. a.:&.“ Al a L'f._.‘_'f;zfu‘\.‘x..x.u";_\.a‘\.f:;-q..,a.\’-n-n’:' _.-_,(-_\._.-‘.»\' \- BT 3 N0

A A I LI I e 0 P I D D I I e A ik L R T Y

C.4. Package Burner_Object_Manager

e | SRR BB R AP R BERRR BB RBR A SRR ARG BR APV ER GG BE R BR QARG RN SRS RO N

--| Module Name:

—~i Burner_Object_Manager

-1

-1 Module Type:

-1 Package Specification

1

~| Module Purpose:

-1 TRhis package manages objects which simulate the

-1 Engine Burner for the C-141 simulator.

-1 This management entails creation of Engine Burner objects,
-\ update and maintenance of its state, and finally state
—~1 reporting capabilities.

--1 Module Description:

-1 The Engine Burner object manager provides a means to create
--| o Burner object via the New_Burner entry and returns

--{ an identification for the Burner, which is to be used when

—~! updating/accessing the Burner objects state as described below.

— 1 The Engine Burner object manager provides a means to update the
-1 state of the object via the:

- 1) Give_Inlet_Air_To

- 2) Give_Fuel_Flow_To

- 3) Give_Spark_To

-~ | entries, requiring the following external state information:
- 1) Inlet_Pressure pounds per square inch

-1 Inlet_Temperature degrees Rankine

-1 Inlet_Air Flow pounds per second

- 2) Fuel Flow pounds per second

- 3) Spark Jjoules

--1 state information vig the: -
- 4) Get_Discharge_Air_From

-~ | entries, yielding the following internal state information:

- 4) Discharge_Pressure pounds per square inch =3
-1 Discharge_Temperature degrees Rankine N
-1 Discharge_Air_Flow pounds per second
-

- | References:

—~1 Design Documents:

-1 none .

~1 User’s Manual:

—| The Engine Burner object manager provides a means of obtaining '_g

P
S
- .

>3

-1 none

-1

—1 Testing and Validation:

-1

N none "

-1 Notes: ﬁ

-1 none

_|' ‘.-—,

- | Modification History: _"".

-l 24Aug87 cpp created

-1

. ‘;{

--| Distribution and Copyright Notice: ‘

-1 TBD - i

i ‘

--| Disclaimer: ST
"

|

I

—~| "This work was sponsored by the Department of Defense.

T

X

60 CMU/SEI-87-TR-43 =

[
~
--. The views and conclusions contained in this document are
--+ solelv those of the authorts; and should not be interpreted as
' -1 representing official policies, either expressed or implied,
- of the Software Engineering Institute, Carnegie Mellon University,
-i the U.S. Air Force, the Department of Defense, or the U.S. Government."
e TR RBRBERRBRRRIABS RN IR ERA RSB R AR AR IR R R BB R IR B ER R ARG AR E RGP R B ERER ARG E ISR
~
& with Standard_Engineering_Types;
package Burner_Object_Manager is
type Burner is private ;- a Burner is an abstruction of a
- Burner within a Engine.
s type Spark is range (None, Low, High);
- function New_Burner return Burner;
-.-‘ - ELL L2 22222 22 22 2 22222 22 R 22 2 R X2 2222 S 2R Tt s 2222222222222
~ - | Description:
--i This function returns a pointer to a new Burner object
. - representation. This pointer will be used to identify
- -1 the object for state update and state reporting purposes.
-* -1
—| Parameter Description:
N -1 return Burner
. - Pointer to a Burner object.
:_ - ! BEERREREER B EBEBE R RGN EER R GS GGG R ER R BB L CRERE B RER LRGSR ER RS C RGOS
- procedure Give_Inlet_Air_To(
' A_Burner :in Burner;
Given_Inlet_Pressure :in Standard_Engineering Types.Pressure;
Given_Inlet_Temperature :in Standard_Engineering_Types.Temperature;
e Given_Inlet_Air_Flow :in Standard_Engineering Types.Air_Flow
- I
o e senn ssane . senenen .
~1 Description:
n -1 Initiates a change in the specified Burner object’s
4 - state given the Inlet_Pressure, Inlet_Temperature,
N -1 and the Inlet_Air_Flow.
~|
- ~1 Parameter Description:
5_ - A_Burner
. - Identifies the Burner whose state is to be changed.
we i Given_Inlet_Pressure
c -1 Is the Inlet_Pressure, in pounds per square inch,
i - which is to affect the state of the Burner object.
-t -1 Given_Inlet_Temperature
- Is the Inlet_Temperature, in degrees Rankine,
; - which is to affect the state of the Burner object.
o oy Given_[nlet_Air_Flow
> —~i Is the Inlet_Air_Flow, in pounds per second,
. which is to affect the state of the Burner object.
| LA Z 2L 222 22 2222 P2 22 2 2 s 2 22222y ez ey Ly
“r
- procedure Get_Discharge_Air_From(
' A_Burner :in Burner;
Returning Discharge_Pressure :out Standard_Engineering_Types.Pressure;
O Returning_Discharge_Temperature: out Standard_Engineering_Types.Temperature;
-"' Returning_Discharge_Air_Flow :out Standard_Engineering Types.Air_Flow
I3
P LR XL 222222 22 222 X Y2 2 a2 X2 2 22 2 22222222 223X TYYY Y)
" Y Description:
T - Initiates a report of the specified Burner object’s
b CMU/SEI-87-TR-43 61

- -
LN

TR Y Y G Y T T Y

v S

P

IR

g

e lY, v ,
{’,f 7 _4" _:“ ‘) /

r

Bl
e
v

R W L B
LA B 0
PRI § . '

i
P

&

%90 "‘

PN
PR PP S]

A]

[IaF SN W)

S e

- -
« X

XA *
A

Wy WL
\'J‘*J e

e

L g P e
SRS LN LN G N

-1 state returning the Discharge_Pressure,
. Discharge_Temperature, and the Discharge_Air_Flow.
-l

-1 Parameter Description:

- A_Burner

-1 Identifies the Burner whose state is needed.

- Returning_Discharge_Pressure

- Is the Discharge_Pressure portion of Burner object’s state,
- in pounds per square inch, which is to be reported on.

- Returning_Discharge_Temperature
- Is the Disc.arge_Temperature portion of Burner object’s state,

-1 in degrees Rankine, which is to be reported on.

. Returning_Discharge_Air_Flow

- Is the Discharge_Air_Flow portion of Burner object’s state,
-1 in pounds per second, which is to be reported on.

-—] HERREEAEERRGSRGRR S AR AER RS E SRR SRS AR SRR SRS RI R DI R IR RG G S S S RS R e T oSS

procedure Give_Fuel_Flow_To(

A_Burmer :in Burner;

Given_Fuel_Flow :in Standard_Engineering Types.Fuel_Flow
%

— ' EL e 22222 222222222 22 A2 22222 R T e 222 2l AL s Rl L

-1 Description:

- Initiates a change in the specified Burner object’s

- state given the Fuel_Flow.

-1

-1 Parameter Description:

-1 A_Burner

- ldentifies the Burner whose state is to be changed.
- Given_Fuel_Flow

-1 Is the Fuel_Flow, in pounds per second,

- which is to affect the state of the Burner object.

procedure Give_Spark To(
A_Burner :in Burner;
Given_Spark :in Spark

%

| PO PP
-1 Description:
- Initiates a change in the specified Burner object’s

-1 state given the Spark.

--1

-1 Parameter Description:

- A_Burner

- Identifies the Burner whose state is to be changed.
-1 Given_Spark

-1 Is the Spark, in joules,

- which is to affect the state of the Burner object.

| FERBRSRRBEAGS RGBS BB PR RG S ARG SR RNSCEERES S SR L AR IV A G SRR ZE GBSO

private
type Burner_Represe: .ion; -- incomplete type, defined in
- package body
type Bumrner is access Burner_Representation;
-- pointer to a Burner representation
end Burner_Object_Manager;

62

. . -
o

CMU/SEI-87-TR-43

b e e e At Rt N iR Rl e T A Ala Rie ANR AED B L.in BS0 e SRR S8 S SR Mt et A A A Rl el bl a0 Bl St iy v e o "q
l

|
1

y W §

Al _ CEJmES

P

Y Y y - - W

kit bd mlediedd

= it R ol A b SRR A A i e i i Nttt S S R AT WL SRR AnE Salh Sl S Sall A Sall Al Sl ek Bl Bedh st d - idis i Bl 20N

]

[JoME

L4
«

Pl

C.5. Package Diffuser_Object_Manager

~|........’..O............0.’................................’.....

--| Module Name:

--| Diffuser_Object_Manager

-

o —-| Module Type:

-1 Package Specification

-

--| Module Purpose:

-1 This package manages objects which simulate the

—~| Engine Diffuser for the C-141 simulator.

-1 This management entails creation of Engine Diffuser objects,
- | update and maintenance of its state, and finally state

-

?H

‘\-‘ —~| reporting capabilities.
o~ -1
—~| Module Description:
- - | The Engine Diffuser object manager provides a means to create
o -1 a Diffuser object via the New_Diffuser entry and returns
[--1 an identification for the Diffuser, which is to be used when
—~| updating /accessing the Diffuser objects state as described below.
‘ -
- -1 The Engine Diffuser object manager provides a means to update the

p- —| state of the object via the:
-1 1) Give_Inlet_Air_To
-l 2) Give_Mach_Number_To

‘: | entries, requiring the following external state information:
":-. -1 1) Inlet_Pressure pounds per square foot

-1 Inlet_Temperature degrees Rankine

- 2) Mach_Number <dimensionless>
W -

-1 The Engine Diffuser object manager provides a means of obtaining
-1 state information vig the:
-1 3) Get_Discharge_Air _From

Ve —| entries, yielding the following internal state information:
- -1 3) Discharge_Pressure pounds per square foot
" -1 Discharge_Temperature degrees Rankine
-1 Discharge_Air_Flow pounds per second
-1
E - | References:
b, —~ | Design Documents:
-1 none
. -1
‘.{ —1 User's Manuai:
s~ -1 none
-1
- - | Testing and Validation:
. - none
Fe -
-| Notes:
-~| none
‘o -
. -1
a ~| Modification History:
-\ 25Aug87 «cpp created
w -1
K -l
e —| Distribution and Copyright Notice:
-1 TBD
v;" -1
Ve --| Disclaimer:
N -1 "This work was sponsored by the Department of Defense.
-~1 The views and conclusions contained in this document are
, —~1 solely those of the author(s) and should not be interpreted as
-l —| representing official policies, either expressed or implied,
@ CMU/SEI-87-TR-43 63
L

N R LA R

1

cana 8 ash Sl al "ake I ta i A AAAAAEIA RN Tl I TR A R .1

1,
L

5

| o 2
o
"s'a

&

"

- of the Software Engineering Institute, Carnegie Mellon University,
. the U.S. Air Force, the Department of Defense, or the U.S. Government.”

e HOPBBEROBAEROGBRCEBBRGSRRRB PGP DAV VLG RV RBRGRPEBRRESIREPLBBBEPRRBAEBRBIGIBHG N

[#% J% 4% |
I

]

™ »
e
::, with Standard_Engineering_Types;
\-: package Diffuser_Object_Manager is
~.
type Diffuser is private; -- a Diffuser is an abstraction of an
- Diffuser within a Engine.

type Mach_Number is digits 3 range 0.00 .. 1.00;

-~ <dimensionless>

function New_Diffuser return Diffuser;
-1 Description:
~ 1 This function returns a pointer to a new Diffuser object

- representation. This pointer will be used to identify

- the object for state update and state reporting purposes.
--| Parameter Description:

- return Diffuser

- Pointer to a Diffuser object.

procedure Give_[nlet_Pressure_Tof
A_Diffuser :in Diffuser;
Given_Inlet_Pressure :in Standard_Engineering Types.Pressure;
Given_Iplet_Temperature :in Standard_Engineering Types.Temperature

%

-1 .

- Description.: :

-1 Initiates a change in the specified Diffuser object’s

-1 state given the Inlet_Pressure, and Inlet_Temperature.

3
3
3
h

-1 Parameter Description:

- A _Diffuser

-1 Identifies the Diffuser whose state is to be changed.
-l Given_Inlet_Pressure

-1 Is the Inlet_Pressure, in pounde per square foot,

-1 which is to affect the state of the Diffuser object.

- Given_Inlet_Temperature

-l I8 the Inlet_Temperature, in degrees Rankine,

- which is to affect the state of the Diffuser object.

| sne Py ree

-
A
:Al

procedure Give_Mach_Number_To(
A_Diffuser :in Diffuser; N
Given_Mach_Number :in Mach_Number '

)4

~1* *e W REERARERIRRIRENESR
-1 Description:

- [nitiates o change in the specified Diffuser object’s

- state given the Mach_Number.

-

~1 Parameter Description:

-1 A _Diffuser

-1 Identifies the Diffuser whose state is to be changed.
. Given_Mach_Number

-l Is the Mach _Number, in <dimensionless>,

-1 which is to affect the state of the Diffuser object.

e | FEVCBEPPEVVREBPAENVEGEAPAPRIBGPRERGED N ARBPEEERR BRSPS RDSIRRP O N EE S

S|

b A
s

1

T,

1

LAM

64 CMU/SEI-87-TR-43

L

e
"l" »

Ed

s

procedure Get_Discharge_Air_From(
A_Diffuser :in Diffuser;
Returnming_Discharge_Pressure: out Standard_Engineering Types.Pressure;
Returning_Discharge_Temperature: out Standard_Engineering_Types.Temperature;
Returning_Discharge_Air_Flow :out Standard_Engineering_Types.Air_Flow

%

-] LZ 2 222 R 22 22222 P22 222 L a2 222222 2 et s d a2 2l e sl ys

—| Description:
- Initiates g report of the specified Diffuser object’s
-1 state returning the Discharge_Pressure and Discharge_Temperature.

-~ Parameter Description:

- A_Diffuser

- Identifies the Diffuser whose state is needed.

—-i Returning_Discharge_Pressure

- Is the Discharge_Pressure portion of Diffuser object’s state,
- in pounds per square foot, which is to be reported on.

-1 Returning_Discharge_Temperature

-1 Is the Discharge_Temperature portion of Diffuser object’s state,
- in degrees Rankine, which is to be reported on.

-1 Returning_Discharge_Air_Flow

- s the Discharge_Air_Flow portion of Diffuser object’s state,
- in pounds per second, which is to be reported on.

- NREEBOR PSR SP R AR REG YRR B RN EBRGRRR AR ER AR ERRE B RGP B RGO UG R BB G B RRR GRS

private

type Diffuser_Representation; -- incomplete type, defined in
-- package body
type Diffuser is aocess Diffuser_Representation;
- pointer to a Diffuser representation
end Diffuser_Object_Manager;

C.6. Package Exhaust_Object_Manager

—| Module Name:

-1 Exhauat_Object_Manager

-1

-1 Module Type:

-1 Package Specification

-1

—~| Module Purpose:

-1 This package manages objects which simulate the

-~ | Engine Exhaust for the C-141 simulator.

-| This management entails creation of Engine Exhaust objects,
-1 update and maintenance of its state, and finally state

--| reporting capabilities.

-1
--| Module Description:

—~| The Engine Exhaust object manager provides a means to create
--1 an Ezhaust object via the New_Exhaust entry and returns

—1 an identification for the Exhaust, which is to be used when

-1 updating/accessing the Exhaust objects state as described below.

| The Engine Exhaust object manager provides a means to update the
--| state of the object via the:

-1 1) Give_Inlet_Pressure_To

--| entries, requiring the following external state information:

-1 1) Inlet_Pressure pounds per square inch

-1 The Engine Exhaust object manager provides a means of obtaining
--1 state information via the:

CMU/SEI-87-TR-43

ORI IR L
NCERLLGCERN Yy

s -(‘.\-"{.('

65

..... LR RA SR S A0k el " ot "M i A0 REL AL S A i RTL At R pRe e Bt by A i R V4 SR N DR el e R e R A A R B e S A A

]

‘."‘

e M

- 2) Get_Discharge_Thrust_From
-1 3) Get_EGT From

-1 4) Get_EPR_From

—~| entries, ylelding the following internal state information:
-1 2) Discharge_Thrust pounds

-1 3) EGT degrees Rankine
-1 4) EPR <dimensionless>
-1

~| References:

~i Design Documents:

-1 none

R SRS

F

=wvy,

~1 User's Manual:
-1 none

—| Testing and Validation:
-1 none

-1 Notes:
-| none

-
- | Modification History:

- | 25Aug87 cpp created
-1
-
--| Distribution and Copyright Notice:

-1 TBD

-1

—| Disclaimer:

~| "This work was sponsored by the Department of Defense.

--1 The views and conclusions contained in this document are

-1 solely those of the author(s) and should not be interpreted as

—~| representing official policies, either expressed or implied,

—1 of the Software Engineering Institute, Carnegie Mellon University,

-t the U.S. Air Force, the Department of Defense, or the U.S. Government.” :f,
—ises wese "
-1

n
with Standard Engineering Types; »
package Exhaust_Object_Manager is ‘
type Exhaust is private; - an Exhaustis an abstraction of an ;~"‘~
— Exhaust within an Engine. :
type Epr is digits 2 range 1.2..2.3; n
—~ <dimensionlsss> { _,:

function New_Exhaust return Exhaust '
- hbt A h bl bl bl hd pdd »
W

--| Description:

—~| This function returns a pointer to a new Exhaust object

-1 representation. This pointer will be used to identify

-1 the object for state update and state reporting purposes.

g %

T

-1 "
-1 Parameter Description: e
-1 return Exhaust
-1 Pointer to an Exhaust object. -
- | - BEEBEPBBRO SN - LI L 2222221]] LL L2 -
=
procedure Give_Inlet_Pressure_To(
A_Exhaust :in Exhaust; .
Given_Inlet_Pressure :in Standard_Engineering Types.Pressure ‘,,‘.;
g o
66 CMU/SEI-87-TR-43 R

-

” s LA NS, 0 -
"" J“” Ay '."-f“-""fd NN PRI N AN

- | L2222 2222 22 222 222 PR 222 22 R Y 2R S LR il R Ll sid

- Description:
- Initiates a change in the specified Exhaust object’s
- state given the Inlet_Pressure.

. -1 Parameter Description:
' - A_Exhaust
o -1 Identifies the Exhaust whose state is to be changed.
-1 Given_Inlet_Pressure
\ -1 Is the Inlet_Pressure, in pounds per square inch,
!‘ -1 which is to affect the state of the Exhaust object.
"4_ - BRRPRRBRE AR RS ERB SR ERSRI PSP SR RRE B AR PRSI ERBFE USSR BTGB S LG H VSR SRS SN S
‘:‘. function Get_Discharge_Thrust_From(
A A_Exhaust :in Exhaust
’)return Standard_Engineering Types.Thrust;
- | 22222 22 2 22 22 222 I 2 A2l e 2L AL I LA el Ll
::'_' --| Description:
' - Initiates a report of the specified Exhaust object’s
-1 state returning the Discharge_Thrust.
-1
- -1 Parameter Description:
v, -1 A_Exhaust
v -1 Identifies the Exhaust whose state is needed.
-1 return Thrust
-, ~1 Is the Discharge_Thrust portion of Exhaust object’s state,
o -1 in pounds, which is to be reported on.
<. Tles N . —ne
- function Get_Egt_From(
" A_Exhaust :in Exhaust
}return Standard_Engineering Types. Temperature;
1 L R P L A e L L L L e L .
. - | Description:
'w:c -1 Initiates a report of the specified Exhaust object’s
i —1 state returning the EGT.
-1
-1 Parameter Description:
-1 A_Exhaust
- - Identifies the Exhaust whose state is needed.
-1 return EGT
-1 Is the EGT portion of Exhaust object’s state,
=~ ~1 m degrees Rankine, which is to be mported on.
A -
function Get_Epr_From(
r. A_Exhaust :in Exhaust
-)return Epr;
cat - - 20BN » L2212 12} REEPRRR SRR
--| Description:
.. -1 Initiates a report of the specified Exhaust object’s
- - state returning the EPR.
P -1
-1 Parameter Description:
- -1 A_Exhaust
. -1 Identifies the Exhaust whose state is needed.
o -1 return EPR
-1 Is the EPR portion of Exhaust object’s state,
. - in <dimensionless>, which is to be reported on.
:\ - I REVRIBRAPBR SR RS NR RSV RG BBV C R LB SR BBER GG RSP SIS ERRE NG R ERBER NG RR
ﬁ .
private
type Exhaust_Representation; -- incomplete type, defined in
:.: -- package body
i type Exhaust is access Exhaust_Representation;
) CMU/SEI-87-TR-43 67

) ERN A Y IS
E.M ‘.r:',a-")".r"f:;_m.n.rlm ..nﬁ&m e T

Aanan Aia dan 2 o b At o d ad dnd Sed it Sad Sok i Met St Sas Ma= AavVole® Ao bt ol " bl " oAl bl gl oM gt Bt N AL TE Dl Val Tl Sl Cal Solh RS N, e RV I I Dl PR Al

-- pointer to an Exhaust representation
end Exhaust_Object_Manager:;

C.7. Package Fan_Duct_Object_Manager

- SPRESVBBABBPBPRBBRSRIBEFRERERVPVRIFR VO LPPRLGLRER LD EERGTAVETINY

~| Module Name:

-1 Fan_Duct_Object_Manager

-}

—-| Module Type:

~1 Package Specification

-1

--| Module Purpose:

—~i This package manages objects which simulate the

~i Engine Fan_Duect for the C-141 simulator.

- | This management entails creation of Engine Fan_Duct objects,
--i update and maintenance of us state, and finally state
- | reporting capabilities.

—~| Module Description:

—~| The Engine Fan_Duct object manager provides a means to create
—| a Fan_Duct object via the New_Fan_Duct entry and returns

—~! anidentification for the Fan_Duct, which is to be used when

- | updating /accessing the Fan_Duct objects state as described below.

--| The Engine Fan_Duct object manager provides a means to update the
-1 state of the object via the:

-1 1) Give_Inlet_Pressure_To

—~| entries, requiring the following external state information:

-1 1) Inlet_Pressure pounds per square inch

--| The Engine Fan_Duct object manager provides a means of obtaining
—| state information via the.

- 2) Get_Discharge_Thrust_From

—~1 entries, yielding the following internal state information:

-1 2) Discharge_Thrust pounds

—-| References:
-1 Design Documents:
-1 none

—1 User's Manual:

-1 none

1

~1 Testing and Validation:
-1 none

-1 Notes:
-1 none

WL oL

-1
-
-\ Modification History:

-1 25Aug87 cpp created e

- 5
. -
— | Distribution and Copyright Notice:

- TBD A
- N
- | Disclaimer: —

-\ "This work was sponsored by the Department of Defense.

—~| The views and conclusions contained in this document are A
—| solely those of the author(s) and should not be interpreted as b
—1 representing official policies, either expressed or implied, L)

68 CMU/SEI-87-TR-43 =

\\ - e DI P N R) . ., .. - " e " t " s m"a a2 BT e M T e"hRYa e ac"am-"
.r.:..-_._.',.r SO A A A NN .r.\ A .)_.1_. “. .r\ R GRS N N A AT)
2o "f“r"%r.'-r.'r.-r.'f.:uftf.‘vrh AT N mumr‘;m-l Lo -.‘ A O g T eV AT A Vot ieP . VRN T T

F‘—v"'-tl*' T ETTRE TR T ETE T VT R NLAdYTEN Y NS YT SN W OO TN T T N R T wL.

L
’
0

e
-
,
- of the Software Engineering Institute, Carnegie Mellon University,
. . the U.S. Air Force, the Department of Defense, or the U.S. Government.”
. o DL LI R LR SRR R e LR 22 e 2 R R R R A2 Y e YRR Yy Yy]
. with Standard _Engineening_Typ-s;
) package Fan_Duct_Object_Manager is
. type Fan_Duct is private; - a Fan_Duct is an abstraction of a
X - Fan_Duct within a Engine.
e function New_Fan_Duct return Fan_Duct;
\-. e | HERBBBABER I NG RESHNR BB RP SPGB IR UG RGP RRFE SRR RBURARRRR NSRBI N B SR

--| Description:

-1 This function returns a pointer to a new Fan_Duct object
< -~ representation. This pointer will be used to identify

N - the object for state update and state reporting purposes.
- | Parameter Description:

-1 return Fan_Duct

: -1 Pointer toa F an _Duct object.

‘& - RRRDEAEARERSERRRERBERARERSGC SR SRR B UGS RRERLEGERREEIEP BN S L1
' procedure Give_Inlet_Pressure_ To(

v A_Fan_Duct :in Fan_Duct;

Given_Inlet_Pressure :in Standard_Engineering_Types.Pressure

Description:
-1 Initiates a change in the specified Fan_Duct object’s
-1 state given the Inlet_Pressure.
~ =1
E: -1 Parameter Description:
-1 A_Fan_Duct
-1 Identifies the Fan_Duct whose state is to be changed.
~1 Given_Inlet_Pressure
p -1 Is the Inlet_Pressure, in pounds per square inch,
- -1 which is to affect the state of the Fan_Duct object.
-1 sas
re
. function Get_Discharge_Thrust_From(
i A_Fan_Duct :in Fan_Duct
)return Standard Engmeenng_'rypos Thrust
- |#0eee L
: --| Description:
- -1 Initiates a report of the specified Fan_Duct object’s
~1 state returning the Discharge_Thrust.
-l
‘. -1 Parameter Description:
; -l A_Fan_Duct
-1 Identifies the Fan_Duct whose state is needed.
-1 return Thrust
oo -t Is the Discharge_Thrust portion of Fan_Duct object’s state,
i -1 in pounds, which is to be reported on.
o - . . - TLIYIT YT YT 2L Y T YT ¥
? ., private
) type Fan_Duct_Representation; -- incomplete type, defined in
N | -- package body
type Fan_Duct is access Fan_Duct_Representation;
no -- pointer to a Fan_Duct representation
;‘.:- end Fan_Duct_Object_Manager;
N
e CMU/SEI-87-TR-43

:"\'i' f\J"'f'-

C.8. Package Rotorl_Object_Manager

o WEGE VIR EEN N BB R RSB RO S DR VG RFERGSEGHREBE R BRGRRGRURBRLI VSR EUR RSO RS

--| Module Name:

- | Rotorl_Object_Manager
--| Module Type:

—~i Paockage Specification

- | Module Purpose:

—1| This package manages objects which simulate the

- | Engine Rotorl for the C-141 simulator.

- i This management entails creation of Engine Rotorl objects,
- | update and maintenance of its state, and finally state

-- | reporting capabilities.

-} -
—~1 Module Description:

--' The Engine Rotor] object manager provides a means to create
--i a Rotorl object via the New_Rotorl entry and returns

- | an identification for the Rotorl, which is to be used when

—| updating [accessing the Rotor] objects state as described below.

--| The Engine Rotor] object manager provides a means to update the
--| stote of the object via the:

-1 1) Give Fanl_Inlet_Air_To

-1 2) Give_Turbinel_Inlet_Air_To

— | entries, requiring the following external state information:
—~1 1) Fanl_Inlet_Pressure pounds per square inch

-1 Fanl _Inlet_Temperature degrees Rankine

- Fanl_Inlet_Air Flow pounds per second

-1 2) Turbinel_Inlet_Pressure pounds per square foot
- Turbinel Inlet_Temperature dzgrees Rankine

-1 Turbinel_Inlet_Air Flow pounds per second

-1 The Engine Rotorl object manager provides a means of obtaining
- | state information via the:

- 3) Get_Fanl_Discharge_Air_From

-1 4) Get_Turbinel_Discharge_Air_From

-1 5) Get_RPM_From

- | 6) Get_Vibration_From

—~| entries, yielding the following internal state information:

-1 3) Fanl_Discharge_Pressure pounds per square inch
-1 Fanl_Discharge_Temperature degrees Rankine

-1 Fanl_Discharge_Air_Fiow pounds per second

-1 4) Turbinel Discharge_Pressure pounds per square foot
-1 Turbinel_Discharge_Temperature degrees Rankine

-1 Turbinel_Discharge_Air_Flow pounds per second

-1 5) RPM rpm

-1 6) Vibration mils

By

- | References:

-1 Design Documents:

- none

-

-1 User’s Manual:

-1 none

-

-1 Testing and Validation:

-1 none

-

--1 Notes:

--| none

-

-} Modification History:

70

-y - o LS L L L > ~
f.r'J'.r.r oW -*-* AT A AN .r.rr.—f
v ﬂﬁa AT AT .h}.»" "'.r"m.rﬂ.&..u.a.m.m A Y0

CMU/SEI-87-TR-43
DA, RS A o "‘.b -"
mm.m@ ‘-.r:-u\. MUREIINTL

A TAWM N, WLIRLY

iy

- s
¥ :-_.)
:': -1 25Aug87 «cpp created
S -
’ n i
- - --| Distribution and Copyright Notice:

NS - TBD

v -1

. - | Disclaimer:

S -1 “This work was sponsored by the Department of Defense.
:-' —~| The views and conclusions contained in this document are

-1 solely those of the author(s) and should not be interpreted as
—| representing official policies, either expressed or implied,

J -.: :-. —~| of the Software Engineering Institute, Carnegie Mellon University,
b, —~| the U.S. Air Force, the Department of Defense, or the U.S. Government.”
s . N .- | BEBRBRRERRR BB ER R GG R B SRR BB ER R RGREREE SRR ABARERE S G BEN BB G IR EREREE R RIS RE SRS
N -
~T '/_\
\' -
- with Standard_Engineering_Types;
. ngl
.
; ool package Rotorl_Object_Manager is
-
L type Rotorl is private ; -- a Rotorl is an abstraction of a
SR -- Rotor] within a Engine.
A - :]
LY type Vibration is range 0..5;
?f" --mils
; ::- function New_Rotorl return Rotorl;
. P OOTYOTOIe ST crrnEaEE - .
LS
; col —~| Description:
S —~| This function returns a pointer to a new Rotor] object
N -1 representation. This pointer will be used to identify
‘ . -1 the object for state update and state reporting purposes.
7 -
<. --| Parameter Description:
:: - -1 return Rotorl
P -1 Pointer to a Rotor] object.
NG [wass vee
NG

procedure Give_Fanl_Inlet_Air Tof
A_Rotorl :in Rotorl;
Given_Fanl_lInlet_Pressure : in Standard_Engineering_Types.Pressure;

Oy
-

)
4

‘-:: o Given_Fanl_Inlet_Temperature :in Standard_Engineering Types.Temperature;

::: ":.) Given_Fanl_Inlet_Air_Flow : in Standard_Engineering Types.Air_Flow
ot 3
Ny - .
@ ., -1 Description:
R -1 Initiates a change in the specified Rotorl object’s

N3 e -1 state given the Fanl_Inlet_Pressure, Fanl_Inlet_Temperature,

Z,, - and the Fanl_Inlet_Air_Flow.
| , -1
R ;'s- —~1 Parameter Description:
4 " -1 A_Rotorl

® -1 Identifies the Rotorl whose state is to be changed.

! -1 Given_Fanl _Inlet_Pressure

: K -1 Is the Fanl_Inlet_Pressure, in pounds per square inch,
b~ -~ -1 which is to affect the state of the Rotorl object.
I * . Given_Fanl_Inlet_Temperature

,,-: -1 Is the Fanl_Inlet_Temperature, in degrees Rankine,

‘. - which is to affect the state of the Rotor! object.

. - Given_Fanl_Inlet_Air_Flow

@ -l Is the Fan1_Inlet_Air_Flow, in pounds per second,

" - which is to affect the state of the Rotorl object.
) :’ . P | * » - - » PO EROREABEEERELIRRPRERRORN0SS
¢ W

f: f.i

’,
L

® CMU/SEI-87-TR-43 71
[+

;‘"

s

~'~ v

'\',,s_,\v'. -.." "-u"

Wy W ¥ o o Ty Wy W Ce -f‘J'
) '\-'\-'\-"\' _,."\N\. 'u"\-»v.,_,x_p. .

--.- &<
*\ O ..'\)\. '\.‘(\ ~

»
"‘I‘o’\c .‘l. * .(1) ""' "'

C T e N T W ARSI T W TR T E T RTRE T EY REAFLBLELWLELNLY TR I LML T YL T LY T e T T T T Ty T Ty TR Y Te e T o Sy T

- procedure Get_Fanl_Discharge_Air_From(

4 A_Rotorl :in Rotorl; 4
Returning Fanl_Discharge_Pressure :out Standard_Engineering Types.Pressure;

A Returning_Fanl_Discharge_Temperature: out Standard_Engineering Types.Temperature;

- Returning_Fanl_Discharge_Air_Flow : out Standard_Engineering Types.Air_Flow

oy PZTI YT Y Y 1212273 T2 YT LTI 22T P Y YT YYY T LS 2]
. -1 Description:
R -1 Initiates a report of the specified Rotorl object’s

- state returning the Fanl_Discharge_Pressure,
- Fanl_Discharge_Temperature, and the Fanl_Discharge _Air _Flow.

:_ -1 Parameter Description:
AN -1 A_Rotorl
~ -1 Identifies the Rotor] whose state is needed.
v -1 Returning_Fanl_Discharge_Pressure
-1 Is the Fan1_Discharge_Pressure portion of Rotor] object’s state,
- in pounds per square inch, which is to be reported on.
-1 Returning_Fanl_Discharge_Temperature
- Is the Fan1_Discharge_Temperature portion of Rotorl object’s state,
. -1 in degrees Rankine, which is to be reported on.
N -1 Returning_Fanl_Discharge_Air_Flow
. -1 Is the Fan1_Discharge_Air_Flow portion of Rotor1 object’s state,

procedure Give_Turbinel_Inlet_Air_To(
A_Rotorl :in Rotorl;
Given_Turbinel_Inlet_Pressure :in Standard_Engineering_Types.Pressure;
|
|

>
: -1 in pounds per second, which is to be reported on.

. s * L2222 T EEEERESIESREY
Given_Turbinel_Inlet_Temperature: in Standard_Engineering Types.Temperature;
Given_Turbinel_Inlet_Air_Flow :in Standard_Engineering_Types.Air_Flow

o)%
. -1 "o e d
" -1 Description:

;,‘ -1 Initiates a change in the specified Rotorl object’s
. -1 state given the Turbinel _Inlet_Pressure, Turbinel_Inlet_Temperature,
;’. -1 and the Turbinel_Inlet_Air_Flow.

-1 Parameter Description:
0 - A_Rotorl
~ -1 Identifies the Rotor] whose state is to be changed.
Py Given_Turbinel_Inlet _Pressure
- -1 Is the Turbinel _Inlet_Pressure, in pounds per square inch,
- -1 which is to affect the state of the Rotor] object.

” -1 Given_Turbinel_Inlet_Temperature

P -1 Is the Turbinel_Inlet_Temperature, in degrees Rankine,
- -1 which is to affect the state of the Rotorl object.

a - Given_Turbinel_Inlet_Air_Flow

. -1 Is the Turbinel_Inlet_Air_Flow, in pounds per second,

: - which is to affect the state of the Rotor] object.

procedure Get_Turbinel Discharge_Air_From(
¢ A_Rotorl :in Rotorl;
> Returning Turbinel_Discharge_Pressure :out Standard_Engineering Types.Pressure;
4 Returning_Turbinel_Discharge_Temperature: out Standard_Engineering Types.Temperature;
:’, Returning Turbinel_Discharge_Air_Flow :owut Standard_Engineering Types.Air_Flow
: 3:] BEGPRPVOEVEVER RGPS NGB EG PR EINERRP PRV ER RGN RIS QR R G RR NGRS IER AN R RBERRS
- Description:
-1 Initiates a report of the specified Rotorl object’s
w - state returning the Turbinel _Discharge_Pressure,
- -1 Turbinel_Discharge_Temperature, and the Turbinel _Discharge_Air_Flow.
“ |

-1 Parameter Description:

%
N
¢ 72 CMU/SEI-87-TR-43
]

WE N TR TE™

TR R AT RO T T W WY WU WO N WRERETTENRFITTTT R OLUR NIRRT T UL LV L T T T Ty TR

- A_Rotorl

- Identifies the Rotorl whose state is needed.

- Returning_Turbinel_Discharge_Pressure

- Is the Turbinel_Discharge_Pressure portion of Rotor] object’s state,

- in pounds per square inch, which is to be reported on.

-1 Returning_Turbinel_Discharge_Temperature

-1 Is the Turbinel_Discharge_Temperature portion of Rotorl object’s state,
-1 in degrees Rankine, which is to be reported on.

- Returning_Turbinel_Discharge_Air_Flow
-1 Is the Turbinel _Discharge_Air_Flow portion of Rotor! object’s state,
-1 in pounds per second, which is to be reported on.

_‘..t.’..”.’...’......‘...t”."...’...Q".......OO&C.....O..O’...

function Get_Rpm_From(
A_Rotorl :in Rotorl
)return Standard_Engineering_Types.Rpm;

_[0..‘...’t’..’...’.”.Q&G...‘t.’....CQ.&I&!..t’.""‘.'!.l&&’.&t..

--| Description:

- Initiates a report of the specified Rotorl object’s
-l state returning the RPM.

-

-l Parameter Description:

.l A_Rotorl

. Identifies the Rotor]l whose state is needed.
-1 return RPM

-1 Is the RPM portion of Rotorl object’s state,

-1 in rpm, which is to be reported on.
"'....’....’....‘.‘.......’."..‘.*Q“.’&Q‘.’."".l.&’&&“.‘.’.“.

function Get_Vibration_From(
A_Rotorl :in Rotorl
)return Vibration;

| FRRARERABRERERS BB ARA RGN ARG SRR R RR R SRR G R RERBR RS E MR IR SRR RSN

- | Description:

-1 Initiates a report of the specified Rotorl object’s
-1 state returning the Vibration.

-1

-1 Parameter Description:

- A_Rotorl

-1 Identifies the Rotorl whose state is needed.

-1 return Vibration

-1 Is the Vibration portion of Rotorl object’s state,
- in mils, which is to be reported on.

e [FRBRRRRSGR AR EEPERASBER BRI B RGERE R R SR ERRERB AR ERRER IR R RS S AR R RGN O RS

private
type Rotorl_Representation; -- incomplete type, defined in
- package body
type Rotorl is access Rotorl_Representation;
-- pointer to a Rotorl representation
end Rotorl_Object_Manager;

C.9. Package Rotor2_Object_Manager

~'............................0&..G...‘C...................0.......

-1 Module Name:
-1 Rotor2_Object_Manager

--| Module Type:
--1 Package Specification
-

--| Module Purpose:

.'T'":TY‘Y“rVrY'T“T

CMU/SEI-87-TR-43

“hagc ach sl ath ahil MAS sc S A atlh she ol aRR O otd sl ald- o dhn-ald-ait ol bl aliC ol GRS A i i JAREa RN S B JRRL LT LR S A Rt SN R R £ S A AR PN AT B VP

gL
W S, ,_J

L~
: o --1 This package manages objects which simulate the
L —i Engine Rotor2 for the C-141 simulator. i
-1 This management entails creation of Engine Rotor2 objects,
A —~| update and maintenance of its state, and finally state !
:..: -- | reporting capabilities. |
AN Sy pe—
A ~| Module Description:
i:: -1 The Engine Rotor2 object manager provides a means to create
D -1 a Rotor2 object via the New_Rotor2 entry and returns
\ ~| an identification for the Rotor2, which is to be used when
; » -~ updating/accessing the Rotor2 objects state as described below.
-1
”.: ~| The Engine Rotor2 object manager provides a means to update the
>, -1 state of the object via the:
" -1 1) Give_Fan2_Inlet_Air_To
“ - 2) Give_Turbine2_Inlet Air_To
. -1 3) Give_Torque_To
A —~ 1| entries, requiring the following external state information:
20 - 1) Fan2_Inlet_Pressure pounds per square inch
. -1 Fan2 Inlet Temperature degrees Rankine
..-: -1 Fan2_Inlet_Air _Flow pounds per second
o -1 2) Turbine2_Inlet_Pressure pounds per square foot
W -1 Turbine2_Inlet_Temperature degrees Rankine
o -1 Turbine2 Inlet_Air_Flow pounds per second
q -1 3) Torque pound feet
- -l
. -1 The Engine Rotor2 object manager provides a means of obtaining p
" —~1| state information via the: g
N -1 4) Get_Fan2 _Discharge_Air_From
¥y -1 5) Get_Turbine2_Discharge_Air_From
L. -1 6) Get_RPM_From
'(-l 7) Get_Vibration_From I
. —~1 entries, yielding the following internal state information:

-1 3) Fan2_Discharge_Pressure pounds per square inch

: -1 Fan2_Discharge_Temperature degrees Rankine 1
. -1 Fan2_Discharge_Air_Flow pounds per second b
- -1 4) Turbine2_Discharge_Pressure pounds per square foot ke
v -1 Turbine2_Discharge_Temperature degrees Rankine
- -1 Turbine2_Discharge_Air_Flow pounds per second
—~1 5) RPM rpm
9 -1 6) Vibration mils)
) - !
.j —-| References: .
L~ - | Design Documents:
A -1 none
; -
"' —~i User’s Manual:
-1 none
. . :
i . —| Testing and Validation:
0 - none
e/ - 9
" --| Notes: j
--| none
4 5
- ~
N -1 Modification History: %
g -1 25AugB87 «cpp created
|
8 -
--| Distribution and Copyright Notice: j
‘ -1 TBD -~
» -
3 -1 Disclaimer:

-1 "This work was sponsored by the Department of Defense.
~| The views and conclusions contained in this document are

-

N

=L

\ 74 CMU/SEI-87-TR-43

S AR

J'.".f .r.f.l)'_"l.;

‘-‘r ‘\J‘-“

J\

o '«I‘,. f,_

T e T ATET BN . A ~ AL R W SR
M R _..'- .-',.\,.\ \,\\.\-\-* . . SN

-
w
-1
-

-1

solely those of the author(s) and should not be interpreted as
representing official policies, either expressed or implied,

of the Software Engineering Institute, Carnegie Meilon University,

the U.S. Air Force, the Department of Defense, or the U'.S. Government.”

SRR ERNS GG SR GEREC ARG BRI R E R R REEF AR NGRS P RN A ST AR R G RS G A G ARG R ARG RS R RS RE RS

with Standard_Engineering Types;

package Rotor2_Object_Manager is

type Rotor2 is private ; -- a Rotor2 is an abstraction of an
-- Rotor2 within a Engine.

type Vibration is range 0..5;
- mils

function New_Rotor2 return Rotor2;

e [FEREEBBBRB G AR B ER BB A RRA KRG AR RBRR RSB AR BB EBBB AN ISR R E R R ARG EB ARG O
- | Description:

-1 This function returns a pointer to a new Rotor2 object

- representation. This pointer will be used to identify

- the object for state update and state reporting purposes.

-

--| Parameter Description:

-1 return Rotor2

-1 Pointer to a Rotor2 object.

- BERERRRRBEE R RERAE B ER G AR R BB EER AR SRS G G E R RSB EC RIS RGP RERRE R G LB AR

procedure Give_Fan2_Inlet_Air_To(
A_Rotor2 :in Rotor2;
Given_Fan2_Inlet_Pressure : in Standard_Engineering_Types.Pressure;
Given_Fan2_Inlet_Temperature :in Standard_Engineering_Types.Temperature;
Given_Fan2_Inlet_Air_Flow : in Standard_Engineering_Types.Air_Flow

%

-— | L2] - RGOS HRERERNES L L2 22]] - L] (222222222 22222
- Description:

- Initiates a change in the specified Rotor2 object’s

-1 state given the Fan2_Inlet_Pressure, Fan2_Inlet_Temperature,
-1 and the Fan2_Inlet_Air Flow.

-

-1 Parameter Description:

-l A_Rotor2

-1 ldentifies the Rotor2 whose state is to be changed.

- Given_Fan2 Inlet_Pressure

-1 Is the Fan2_Inlet_Pressure, in pounds per square inch,

-1 which is to affect the state of the Rotor2 object.

-1 Given_Fan2_Inlet_Temperature

-1 Is the Fan2_Inlet_Temperature, in degrees Rankine,

-1 which is to affect the state of the Rotor2 object.

- Given_Fan2_Inlet_Air_Flow

-1 Is the Fan2_Inlet_Air_Flow, in pounds per second,

- which is to affect the state of the Rotor2 object.

- | BRBRBERI SRS EBPVPEF LRGN NI S RRIGERSREBP APV IR GN S LGP E RGN SIS

procedure Get_Fan2_Discharge_Air_From(
A_Rotor2 :in Rotor2;
Returning Fan2_Discharge_Pressure :out Standard_Engineering_Types Pressure;
Returning Fan2_Discharge_Temperature: out Standard_Engineering_Types.Temperature;
Returning Fan2_Discharge_Air_Flow :out Standard_Engineenng_Types.Air_Flow

Iy

. l (2 X2 222222 X2 R 222 X 22 R A 2R 2R 2 RS 2R Y2 R R Ry YRy 2 Yy Yy e g

By Description:

-1 Initiates a report of the specif.ed Rotor2 object’s

CMU/SEI-87-TR-43 75

R B Eas 2ok o ok iad el s at. sk o Ate fin Ata due S Ale hre MR Sva Sl LS Bl Sl Sah et daf Ba® hat Ae Sa" it ASSall A sl At N A0 Sl Sl Aadl 0 Sall Tt e D |

—

-1 state returning the Fan2 _Discharge_Pressure,
-t Fan2_Discharge_Temperature, and the Fan2_Discharge Air_Flow. i

-1 Parameter Description:

-1 A_Rotor2

- Identifies the Rotor2 whose state is needed.

- Returning Fan2_Discharge_Pressure

-1 Is the Fan2_Discharge_Pressure portion of Rotor2 object’s state,
- in pounds per square inch, which is to be reported on.

- Returning_Fan2_Discharge_Temperature

-1 Is the Fan2_Discharge_Temperature portion of Rotor2 object’s state,
- in degrees Rankine, which is to be reported on.

-1 Returning_Fan2 _Discharge_Air_Flow

-1 Is the Fan2_Discharge_Air_Flow portion of Rotor2 object’s state,
-1 in pounds per second, which is to be reported on.

- | BRE B AR BINRRBBIRRGEERETRERARRBFEPGRRESRGREREE RSB BRRRBE R GG R SR

procedure Give_Turbine2_Inlet_Air_To(
A_Rotor2 :in Rotor2;
Given_Turbine2_Inlet_Pressure :in Standard_Engineering_Types.Pressure;
Given_Turbine2_Inlet_Temperature: in Standard_Engineering_Types.Temperature;
Given_Turbine2_Inlet_Air_Flow :in Standard_Engineering Types.Air_Flow

3: I HERBBERREREERB GRS SRR R RG R RN RERGERGRRERER BB ER GRS REB RGP RERRBR RN ERRS

-1 Description:

P

ps

-
—i
-1
-1

Initiates a change in the specified Rotor2 object’s
state given the Turbine2_Inlet_Pressure, Turbine2 _Inlet_Temperature,
and the Turbine2_Inlet_Air_Flow.

Parameter Description:

-1 A_Rotor2

. Identifies the Rotor2 whose state is to be changed.

-1 Given_Turbine2_Inlet_Pressure

-1 Is the Turbine2_Inlet_Pressure, in pounds per square inch,
- which is to affect the state of the Rotor2 object.

-1 Given_Turbine2_Inlet_Temperature

-1 Is the Turbine2_Inlet_Temperature, in degrees Rankine,
-1 which is to affect the state of the Rotor2 object.

- Given_Turbine2_Inlet_Air Flow

-1 Is the Turbine2_Inlet_Air_Flow, in pounds per second,
-\ which is to affect the state of the Rotor2 object.

- e CEREEEPRN S MR

[5 W o Sk AR idmis AR 0 ENGId Aedel:

procedure Get_Turbine2_Discharge_Air_From(
A_Rotor2 :im Rotor2;
Returning_Turbine2_Discharge_Pressure :out Standard_Engineering Types.Pressure;
Returning_Turbine2_Discharge_Temperature: out Standard_Engineering_Types.Temperature;
Returning Turbine2_Diascharge_Air_Flow : out Standard Engineering Types.Air_Flow

I3
. P PP T T YT TP T Y

LalimSh

.y Description: a
~-i Initiates a report of the specified Rotor2 object’s
- state returning the Turbine2_Discharge_Pressure,
oy Turbine2_Discharge_Temperature, and the Turbine2_Discharge_Air_Flow.
- Parameter Description.: -:
- A_Rotor2 -
- Identifies the Rotor2 whose state is needed.
) - Returning_Turbine2_Discharge_Pressure .
{ - Is the Turbine2_Discharge_Pressure portion of Rotor2 object’s state, &.‘
P - in pounds per square inch, which is to be reported on. -
Returning_Turbine2_Discharge_Temperature
Is the Turbine2_Discharge_Temperature portion of Rotor2 object’s state,
in degrees Rankine, which is to be reported on. '3
Returnung Turbine2_Discharge_Air_Flow N
- o
6 CMU/SEI-87-TR-43 a

.-.\ '."-

S =';(;!'L’._'A MAL -.fLm

Al B - A Be I SRkl “RAL Sh B A b cad el cadh el tad sl dnk Bl Sal S Faf Safh Sl Saf ol Aus i Ao el Sl i S il Bl S S A I Al R S A A Mk ik Sl Sad Bad Ml Bk Al Sul bnf Aok Ao A |

- Is the Turbine2_Discharge_Air_Flow portion of Rotor2 object’s state,
- in pounds per second, which is to be reported on.
. - | RERE P ERB RGP R AR RNRBBR PR PP AR RGP RR R EE R BN RE R ROP LV RE VAU G GE 2GR CR BNy

function Get_Rpm_From(
A_Rotor2 :in Rotor2
)return Standard_Engineering_Types.Rpm;

— | FRBBBBRRORRANRP AR GBS BRI R BEVERP VR I RENREERSARR BN ERRER BBV XS AP ESEE SN

- | Description:
' - Initiates a report of the specified Rotor2 object’s
g -1 state returning the RPM.
- -
-1 Parameter Description:
-, -1 A_Rotor2
e -1 Identifies the Rotor2 whose state is needed.
D -1 return RPM
-1 Is the RPM portion of Rotor2 object’s state,
- -1 in rpm, which is to be reported on.
“a e | HHARSDESES L2BLSERVBBEES NS sessessnae
u
L

function Get_Vibration_From(

) A_Rotor2 :in Rotor2

-) return Vibration;

r:‘ e | RESHREIRNESANSAA USRS SSRGS SSRGS seerNRE sane
- | Description:
-1 Initiates a report of the specified Rotor2 object’s

v -1 state returning the Vibration.
E -

T -1 Parameter Description:
-1 A_Rotor2

.t -1 Identifies the Rotor2 whose state is needed.

i -1 return Vibration
-1 1s the Vibration portion of Rotor2 object’s state,
-1 in mils, which is to be reported on.

» -l see

procedure Give_Torque_To{
A_Rotor2 :in Rotor2;
Given_Torque :in Standard_Engineering Types.Torque

X

Al -1
~i Description:
i Initiates o change in the specified Rotor2 object’s
' -1 state given the Torque.
—-i Parameter Description:
- A_Rotor2
sﬁ - Identifies the Rotor2 whose state is to be changed.
N - Given _Torque
o - s the Torque, in pound feet,
- which s to affect the state of the Rotor2 object.
i s
iy
£ private
type Rotor2_Representation; -- incompiete type. defined in

-~ package body
type Rotor2 is sccess Rotor2_Representation;
-- pointer to a Rotor2 representaiion
end Rotor2_Object_Manager,

> CMU/SEI-87-TR-43 77

WAL SR SO W AT AT N I N O T T N N N P R ST O SR,
i e e R N Gy NN NP DR MR RN
E)..)" N e N e Y z e e e e AT ot E P N

P

DRI

s s s 83

.

Tatas VD k‘\“‘;\‘-\

LAY

- eI A0S

-

LA %Y

s 4 an

C.10. Package Flight_Systems

e | FERBRBAERBTA ARG GBI R PSR SE R BB A BRI DU R RO R PR SRR SRR R IR RAA ST GA BB ER GG

--| Module Name:
-1 Flight Systems
-

-1 Module Type:
-1 Package Specification
-

--| Module Purpose:

-1 Executive for flight systems
-1
- | Module Description:

This executive is responsible for processing all flight systems.
Processing involves handling all connections between the flight
systems and processing each system.

-

-1

-1

-

~| References:

Design Documents:
none

-1

User’s Manual:
none
-

-1

Testing and Validation:
none

-1

- | Notes:

-1 none

-

-~ | Modification History:

21Aug87 kil created

Distribution and Copyright Notice:
-i TBD

-1

Disclaimer:
“This work was sponsored by the Department of Defense.
~ . The views and conclusions contained in this document are
~ 1 solely those of the author(s) and should not be interpreted as
—-i representing official policies, either expressed or implied,
~. of the Software Engineening Institute, Carnegie Mellon University,

—~ the U.S Air Force, the Department of Defense, or the U.S. Government.”

with Global_Typer;
use Global_Types;

peckage Flight_Systems ie

proooduro Update_Flight_Systems (Frame: in Global_Types.Execution_Sequence);

- (L 2L LT T2 YL

--1 Description:
executive which updates all flight systems

--| Parameter Description:

- frame s the current executing frame
. 8000000000000 000000 50000000 BRNBCNRVVRBVINERICRNEO2CRRRONSGSS

end Flight_Systems;

P C T u'- Ny W W Y W
..-.\'\.."-\‘-"\.'\.',\.\\\ '-vs '\ \.

Wty

s_,.v'\,,

CMU/SEI-87-TR-43

-
"'\, ')\ \.l\{\f.‘f\.ﬂ."f\.f\f

VY

ATRTH

[)i

C.11. Package body Flight_Systems

. - | ARRBEBR B RN RN RS ERRRBE R R ERER GG RRERREERRB R SSRGS R SRR GRS RS R SR E S
--! Module Name:
-1 Flight Systems

Y ol

PR --i Module Type:

- --| Package Body

-1
- | Module Description:

- | This executive is responsible for processing all flight systems.
-1 Processing involves handling all connections between the flight
-t systems and processing each system.

A

‘\-j -1
- -1
--1 References:
-1 Design Documents:
m - none
N -1
‘ ~| Testing and Validation:
-~ none
v -
Y --1 Notes:
-1 none
-1
- | Modification History:
-1 21Aug87 ki created

- | Distribution and Copyright Notice:

.’ -\ TBD
-1

- | Disclaimer:
- -1 "This work was sponsored by the Department of Defense.
I —~| The views and conclusions contained in this document are
N ~1 solely those of the author(s) and should not be interpreted as
-1 representing official policies, either expressed or implied,
~| of the Software Engineering Institute, Carnegie Mellon University,
s 1 the U.S. Air Force, the Department of Defense, or the U.S. Government.”
-1 .
5 with Flight_Systems_Connection_Manager;
. with Flight_Subaystem_Names; use Flight_Subsystem_Names;
with Engine_Updater;
ol with System_Power_Updater;
.-I
- package body Flight_Systems is
\’ Ca type Active_In_Frame is array (Name_Of_A_Flight_Subsystem)
i s of Boolean;
‘ Its_Time_To_Do : constant array (Global_Types.Execution_Sequence) of
. Active_In_Frame:=
: (Frame_1_Modules_Are_Executed => (Engine_1 => (True),
- others => (False)),
Frame_2_Modules_Are_Executed => (Ac_Power => (True),
- others => (False)),
| - Frame_3_Modules_Are_Executed => (Engine_2 => (True),
a others => (False)),
‘ Frame_4_Modules_Are_Executed => (Dc_Power => (True),
. others => (False)),
\ ’g Frame_5_Modules_Are_Executed => (Engine_3 => (True),
w

CMU/SEI-87-TR-43

LGS \-"\"\"\"-\&-’ Ll L S A O
A A T A e e e R

79

SOy
AN,
;.mn.fk.f& '

sy

.
Y
£
oy
¥ o
s
R *:“;
:-‘ others => (False)),
L - Frame_6_Modules_Are_Executed => (others => (False)),
! Frame_7_Modules_Are_Executed => (Engine_4 => (True),
v others => (False)),
o~ Frame_8_Modules_Are_Executed => (others => (False))
r. -~ %
o
-
b
..
h procedure Update_Flight_Systems (Frame: in Global_Types.Execution_Sequence) is
“ -— | BEBEERRERBR RS R P BE RN B R RS YR RSB RVEEER SRR A RSP RBRPEESE R R REB SRR RSN G RES
'~ ~| Description:
< -1 flight systems executive. Performs process connections and update
- —~| as an atomic action for each subsystem.
A -
. --| Parameter Description:
. -1 frame is the current executing frame
\ -
LS —-| Notes:
:- -l none
N [ewnan LA I S T L T suone savuus
- begin
B~ for A_Subsystem in Name_Of_A_Flight_Subsystem loop
o if Its_Time_To_Do (FrameXA_Subsystem) then
ax case A_Subsystem is

when Dc_Power. Ac_Power =>

g2

e Flight_Systems_Connection_Manager.
\ _:ur Process_Power_Connections_To (A_Subsystem);
;\j System_Power_Updater.
{ Update_System_Power(A_Subsystem);
' - when Engine_l. Engine_4 =>
; ::_- Flight_Systems_Connection_Manager.
- Process_Engine_Connections_To (A_Subsystem);
v Engine_Updater.
! :. Update_Engine (A_Subsystem);
% end case;
) end if;
‘,,, end loop;
'3'.- end Update_Flight_Systems;
¢n
el
0 begin -- flight_systems
e null ;
. j. end Flight_Systems;
i ,.r:'
4.
%
4
D, C.12. Package Flight_Subsystem_Names
p. v
bt - e e .
- 1 Module Name:
b —~1 Flight Subsystem Names
3 -
o --1 Module Type:
9. --| Package Specification
a% -1
oy —~| Module Purpose:
5; -1 Names all subsystems under flight systems
-1
e 80 CMU/SEI-87-TR-43

SN Y ,)_.\".\.-.\ M
B N N A A NI NN P g

"
.
[
Y
' --| Module Description:
. -1 Provides the names of all subsystems under flight systems. The
: —1 subsystems are contained in systems, e.g., system power and engines,
. —~1 under the scope of flight systems.
' -1
--| References:
o -1 Design Documents:
o -~ none
= -1
~| User’s Manual:
-1 none
. - |
-t ~| Testing and Validation:
- none
- .
:»: -1 Notes:
’ -| none
-
- - | Modification History:
o —~} 21Aug87 k!l created
-~ -1
-
- | Distribution and Copyright Notice:
I
-~ -1 TBD
=~ -1
-1 Disclaimer:
—1 "This work was sponsored by the Department of Defense.
e —~! The views and conclusions contained in this document are
0 —~1 solely those of the author(s) and should not be interpreted as
" -1 representing official policies, either expressed or implied,
-1 of the Software Engineering Institute, Carnegie Mellon University,
e —~) the U.S. Air Force, the Department of Defense, or the U.S. Government.”
-— I - -] L2z
package Flight_Subsystem_Names is
{ r\
::'- type Name_Of_A_Flight_Subsystem is (Dc_Power, Ac_Power,
nt Engine_1, Engine_2, Engine_3, Engine_4);

end Flight_Subsystem_Names;

¢~ |

C.13. Package Flight_Systems_Connection_Manager

'3 -1 . . L2 Y22 T2 T 2L 22T e 2 2
o -1 Module Name:
~ ~| Flight Systems Connection Manager
-
--| Module Type:
o~ —1 Pachage Specification
.- -]
e
- | Module Purpose:
~1 Describes and processes all connections between flight systems
" P —
= -1 Module Description:
-1 This package is responsible for proccessing all connections between
~| systems at all levels lower than Flight Systems.
e -1
" -1 References:
-1 Design Documentas:
- none
o -i
. ~| User’s Manual:
’I
Cu
b CMU/SEI-87-TR-43 81
> .
e e T e e e N N e e Lt T N N Lt T LN Lt o LN, e S S 3 % % TP U N R T LENTALL VLT TR
O R N L R R S R N G R G ¢ ’.&m _A‘_';:L‘\:}fg 'E.‘.'*b MN’Q"&S;}I'“

Ty TR Y WY T W LT MY T M T RV RTINS TR TR T TR T WY
n
i
“~

’a

K
g

X

i none

-l Testing and Validation:

- none
-

-1 Notes:
- none

e oo eeemamcececeeeemmsemacmeee o sememnmemmmeneennan
- | Modification History:
- 21Aug87 ki created

-1

- .
--| Distribution and Copyright Notice:

-1 TBD

-

-1 Disclaimer:

' N e W e e Cw o Cw

—1 "This work was sponsored by the Department of Defense.

- | The views and conclusions contained in this document are

—~ 1 solely those of the author(s; and should not be interpreted as

—~! representing official policies, either expressed or implied,

- of the Software Engineering Institute, Carnegie Mellon University,

[essesessnesssee

procedure Process_Power_Connections_To (

package Flight_Systems_Connection_Manager is

A_Subsystem: in Name_Of_A_Flight_Subsystem);

i the US. Air Force, the Department of Defense, or the U.S. Government.”

LI L]

with Flight_Subsystem_Namee; use Flight_Subsystem_Names;

- L)

-1 Description:

- its environment.

-1

- | Parameter Description:

| a_subsystem is the subsystem to update

-1 This procedure processes all connections between the system power
—1 subsystem and the other systems at the flight executive level.
-~ Processing of connections means to make the subsystem consistent with

procedure Process_Engine_Connections_To ¢

A_Subsystem: in Name_Of_A_Flight_Subsystem);

--| Description:

- environment.

—| Parameter Description:
a_subsystem i3 the subsystem to update

PPy

1 This procedure processes all connections between the engine
-1 subsystem and the other systems at the flight executive level. Processing
of connections means to make the subsystem consistent with us

end Flight_Systems_Connection_Manager;

n
»

P OPS020BS0EGEISS

T T LT e e e e Te e LTy Ty e

CMU/SEI-87-TR-43

R A B .T‘

{

 dedds AR Lk Coy

Al 0 aSeld 0 KK R

i Gy

[S 4

A

C N N

LD ldan sax Ll LA

b]

A
W
b, -
e ~
) [
" C.14. Package body Flight_Systems_Connection_Manager
.)
' ﬁ -— i LZ 222X 2 T 2R 22222 2R R R AR 2222 222 2R R 2R A R AR SRR AR 2222t 2
NI - | Module Name:
o —~{ Flight Systems Connection Manager
L] .. -— l
T —| Module Type:
?‘ T —~| Package Body
* i
! ! -1 Module Description:
: . -1 The procedure below defines all connections for passing data
" —~| between flight systems. Each connection is handled by a procedure
. -l call
Pl
\ N -
SN N
» -
" -1 References:
-1 Design Documents:
P -1 none

-1 Testing and Validation:

-1 none
o -
. -1 Notes:

-1 none

- ‘
. --| Modification History: i
- —i 21Aug87 kl created |

- -l

--| Distribution and Copyright Notice:

PR A N WS £ Mt apL St AE N

”
- -1 TBD
q K -
: ~| Disclaimer:
) . -1 "This work was sponsored by the Department of Defense.
. —~1 The views and conclusions contained in this document are

PR
»
.4

—| solely those of the author(s) and should not be interpreted as

~ | representing official policies, either expressed or implied,

~| of the Software Engineering Institute, Carnegie Mellon University,

~| the U.S. Air Force, the Department of Defense, or the U.S. Government.”

3

<

with Engine_Aggregate;

- -. with Rotor2_Object_Manager;
YOl ' with Ac_Power_Aggregate; use Ac_Power_Aggregate;

{ ‘e package body Flight_Systems_Connection_Manager is

) g Engines_Tu_ldg Map : array (Engine_l..Engine_4) of
. Ac_Power_Aggregate.Integrated_Drive_Names := (
., Engine_l => Idg_1,

:, - Engine_2 => Idg_2,

Cte Engine 3 => Idg_3,

Engine_4 => [dg_4);

o proocedure Process_Power_Connections_To (
A_Subsystem: in Name_Of_A_Flight_Subsystem) is separate ;
P NOBCPCOBEVBOR RS SC00RSSVBVPPVVRVPSOLAS2PSP8SGBRPVSIVVVVLBTRGENGGSS
T, --| Description:
4 -1 This procedure procesaes all connections between the system power
-1 subsystem and the other systems at the flight executive level.
-1 Processing of connections means to make the subsystem consistent with

.;; | us environment.
-
: CMU/SEI-87-TR-43 83

et A A AL At A a2l Sk Ak Aad el et Aokl Salldiad Bes Aat At a® Aa‘olie s k=Y ala it ot gl abl gl sth o At AL AN A el Sal Sl Sl Sad 0o Solb Rul SaR B Ve e Ny I N MM SR A

i

- | Parameter Description:

| a_subsystem is the subsystem to update
-

- | Notes:

- none .
| BRNSR UGS SRR PR AR R R RN G RERE RS SR BB R FEE G RERFRRERE SRR E PRI ER AR R ER R EE R RN '

2 1 4 5 a s

procedure Process_Engine_Connections_To (
A_Subsystem: in Flight_Subsystem_Names.Name_Of_A_Flight_Subsystem)
'y is separate ;
0 - RPN PRSPCREEVSER RSP ERESRRB SRR GG RIREBRBBE SRR G RGBS F ORGSR R SRE RS RE®
N --| Description:
~ -1 This procedure processes all connections between the engine
~ -1 subsystem and the other systems at the flight executive level. Processing
-1 of connections means to make the subsystem consistent with its
—. enuvironment.
el
: --| Parameter Description:
~ -1 a_subsystem is the subsystem to update
~ -
3 - | Notes:

- none
- EX XL 222X YT F YR 2R AR R R P 2 R R AR IR R Ry Y]

end Flight_Systems Connection_Manager; y

C.15. Separate Procedure body

., Process_Engine_Connections_To
~ -1 Module Name:
~ - | Process_Engine_Connection_To
., N
—~| Module Type:
N —-i Separate Procedure Body
1
- | Module Purpose:
- ~ 1 Process connections between an engine subsystem and ail external
:' - systems.
. e
: --| Module Description:
, —~i This procedure processes all connections between an engine subsystem
) —1 and external systems. Processing of connections means to mahke
g -1 the subsystem consistent with its environment.
: --| Parameter Description:
| a_subsystem is the subsystem to update
i —
_‘ - | References:
» -1 Design Documendts: \
: -1 none "1
s o .
) =1 User's Monual:
! - | none

-
1 —-| Testing and Validation:

L

- none

~: l Notes:

e | none ﬂ
84 CMU/SEI-87-TR-43 ;}

-rf vfcr-r'(.f‘.r‘.r‘f.’.-.af

N A
t‘t‘r "

o
»:\ o

m.hm mmr.mbm MR NINTII 3¢

L SECIIN

ot

“ 05,
L]

- .-

- | Modification History:

-l 25Aug87 ki created

-1

! .

- | Distribution and Copyright Notice:

-1 TBD

-1

~| Disclaimer:

-1 "This work was sponsored by the Department of Defense.

-1 The views and conclusions contained in this document are

—~1 solely those of the author(s) and should not be interpreted as

-1 representing official policies, either expressed or implied,

—1 ofthe Software Engineering Institute, Carnegie Mellon Uriversity,
-1 the U.S. Air Force, the Department of Defense, or the U.S. Government.”

EREYTTY IR AT Py PPy AR RN

with Ac_Power_Aggregate;

with Integrated_Drive_Object_Manager;

with Engine_Aggregate;

with Rotor2_Object_Manager;

with Standard_Engineering_Types; use Standard_Engineering Types;

separate (Flight _Systems_Connection_Manager)

procedure Process_Engine_Connections_To (
A_Subsystem: in Flight_Subsystem_Names.Name_Of_A_Flight_Subsystem) is

Integrated_Drive_Energy : Integrated_Drive_Object_Manager.Energy;

-- A local variable is defined to store the value spark when it is read from

— the ignition system. This is a convention, described in the SEI Ada

- Coding Guidelines (currently under development), to restrict the spread of embedded
~ function calls, i.e., function calls as parameters within other function calls.

Some_Spark : Ignition.Spark;

function Spark_Conversion (In_Spark : in Ignition_Object_Manager.Spark)
return Burner_Object_Manager.Spark is

-1
~| Description:

-1 This function performas a type conversion. It converts

—~| the spark from the Ignition to a spark that the

—~!1 Burner_Object_Manager can accept. This is done

—~i as an example of how the type conversions can be used to

-1 connect objects which either communicate through a

-1 valve/regulator, or need different grains of coarseness of

-1 the information.

—~1 In this case we are assuming that the Igition system

—~1 needs finer information about the spark than does the Burner system.
-

~1 Parameter Description:

-1 In_Spark is the spark that the Ignition supplies.

~| return Spark is the spark returned for the Burner

| QNG EPPEVCGPRPBPREPRNVPRPIVRE VPGSV L VG B RNV CE PSSP 2 RSR RGNS SO NS

case In_Spark is
when 0.2 => RETURN Bumer_Object_Manager.None;
when 3.9 => RETURN Bummer_Object_Manager.Low;
when 10..20 => RETURN Burner_Object_Manager.High;
end case ;
end Spark_Conversion;

begin -- Process_Engine_Connections To

CMU/SEI-87-TR-43

i 2 bl R Tl B Sl Ae i e e Sied o fint Ste MESEERIAL SR VAR ST Sni Sok Sal Bk Sal Ball g 6 & St ats aid SRh- sl SRR L NA BN’ AV Bav Bav Sou Aok and Aol Sl A B 4 Ria She 4 8 Sia als Bl e 'S0 SEE TRE T ‘

<
>,
0%
,
» : -- All engine external connections are handled in this procedure.
‘ ‘ -- Each engine has the same kind of connections, but each engine is
; -- connected to different instances of other objects. Thus all engines
» -- are handled alike here. The different connections are described by
o -- the engine_aggregate package.
':: ~ Get_Air_From (the_environment);
\ - Give_Air_To (a_diffuser);
- goes here
b) N "
N -
"\'./ -- Get_Mach_Number_From (the_airframe);
o - Give_Mach_Number_To (a_diffuser);
= - goes here
N -
-:': - Get_Discharge_Pressure_From (the_cabin_air);
e - Get_Discharge_Pressure_From (the_air_conditioning_system);
» v - any processing of these two pieces of information goes here
v -- Give_Discharge_Pressure_To (a_bleed_valve);
- goes here
I -
:: - Get_Torque_From (the_hydraulic_system);
. - Get_Torque_From (the_oil_system);
e -- Get_Torque_From (the_starter_system);
b - Get_Torque_From (the_fuel_system); r
(- Get_Torque_From (the_electrical_system);
w - any processing of these five pieces of information goes here
,,: -- Give_Torque_To (a_rotor2); - goes here
v -
! :1 -- For now we are just showing one of these five connections, the one
b ~ from the electrical system. For the complete system, all five pieces
3 - of information would be gathered and processed before passing the
~ information to the Rotor2.
N Integrated_Drive_Energy :=

Integrated_Drive_Object_Manager.Get_Energy_From (
A_Integrated_Drive => Integrated_Drive_Generators(
Engines_To_ldg Map(A_Subeystem))
%

Rotor2_Object_Manager.Give_Torque_To (
A_Rotor2 => Engine_Aggregate.Engines(A_Subsystem).The_Rotor2,
Given_Torque => Torque(Integrated_Drive_Energy)

- Get_Fuel_Flow_From (the_fuel_system);
- Give_Fuel _Flow_To (a_burnerj;
- goes here

'- 'l ¥ n_¥ o
ALESCONNANG Lr s a n @ 0 s w2

- Get Spark from the Ignition and feed it to the Engine Burner.

Some_Spark :=

. Ignition.Get_Spark_From (This_Ignition(Given_Engine_Name));
1)
::" Bumer_Object_Manager .Give_Spark_To (
: A_Burner => EnginestAn_Engine). The_Burner,
L]
e 86 CMU/SEI-87-TR-43

'\.'-*\\\3'\":'\
‘“,.l."l.' ‘C"‘

e

L0 WAL S WY

i
' DY AT N iy
{\‘Isf}fvl'f

,:.v-,‘. }x A R {"’\"'\.’_‘-* _,,x\-\.'.

¥,5.9,%) AN A M

'ﬂ‘ *»D*"i'\\\%v)
! fat b b

-

L R

TN

W

ASS

.y

Ry e
S

v

S4S

L $

:

L o W o W W N ¢ o o, o
b R R S R R R R ARG R R s

Given_Spark => Spark_Conversion(Some_Spark));

end Process_Engine_Connections_To;

C.16. Separate Procedure body
Process_Power_Connections_To

e [HBRRPERRER SRR S EEARB B SR E RS G R RBRDRIEAREREERE SRS R AR AL LRE R BB SRS BEE S

- | Module Name:

--| Process_Power_Connections_To

-1

-~ | Module Type:

-1 Separate Procedure Body

-1

--| Module Purpose:

-1 process connections between a power subsystem and external systems
-1
--1 Module Description:

-1 This procedure processes all connections between a power subystem
-1 and external systems. Processing of connections means to make
-1 the subsystem consistent with its environment.

~1

--| Parameter Description:

~ | a_subsystem is the subsystem to update

-1

~| References:

~| Design Documents:

-1 none

-1 User’s Manual:
-1 none

—-| Testing and Validation:
-1 none

-1

- | Notes:

~| none

-1
- | Modification History:
~| 25Aug87 ki created

-
—| Distribution and Copyright Notice:

-1 TBD

-1

- | Disclaimer:

-1 "This work was sponsored by the Department of Defense.

~| The views and conclusions contained in this document are

-1 solely those of the author(s) and should not be interpreted as

-1 representing official policies, either expressed or implied,

—~| of the Software Engineering Institute, Carnegie Mellon University,

—| the US. Air Force, the Department of Defense, or the U.S. Government.”

e | SHEB08853988808800SBRSLBESRARCAS2ALERGLLQLBLURIBISLVEPSPIVNBED 0

with Standard_Engineering_Types; use Standard_Engineering_Types,;
with Ac_Power_Aggregate;

with Integrated_Drive_Object_Manager;

with Engine_Aggregate;

with Rotor2_Object_Manager;

with Flight_Subsystem_Names; use Flight_Subsystem_Names;

separate (Flight_Systems_Connection_Manager)

CMU/SEI-87-TR-43

87

Rl AR A

MO

SINEY

o

-~ % .‘ -- \ L) ‘- ! o - “m ’ﬂ X L
' S ALY v, L I, g
AN AN e 6 GGGV O DAY VLA

F'-W’--,w- Rl= Al Sad el et Sof it i ek A A il i S AN M R MACE S e i il D R T A N A A

procedure Process_Power_Connections_To ¢
A_Subsystem: in Name_Of_A_Flight_Subsystem) is

Rotor2_Energy: Rpm:

begin
case A_Subsystem is
when Ac_Power =>
for An_Engine in Engine_l..Engine_4 loop

Rotor2_Energy =
Rotor2_Ob)ect_Manager.Get_Rpm_From .
A_Rotor2 =>

Engine_Aggregate EnginesiAn_Engine: The_Rotor2
Integrated_Drive_Object_Manager Give_Energy_To
A_Integrated_Dnve =>
Ac_Power_Aggregate Integrated_Dnve_ Generators
Engines_To_ldg_Map An_Engwe
Given_Energy =>
Integrated_Dnive_Obiect Manager Enercy
Rotor2 Energy
end loop .
when D¢ Power => null
when othere :-> null

end case

end Process Power Connections To

C.17. Package Engine_Updater

I T2 22T YT SR LY 2R S P2 YT 2 Y R R Y S PR Y R e DR L A R R Y R Y L]

Module Name:
Engine Updater

Module Type:
Package Specification

Module Purpoee:
This package coniaina the aingie procedure i fo ubdale ‘e
simuiation of on Engine [t s the sow interface to the Engines
from the perspective of the executive
| Module Description:
- The single operation provided hv this package is parameterized 1with
~ the name of the engine to be upd .ted. The operation accompiishes
-+ twao sets of lower level aperations
- -one to update the state of the objects at the boundries of the
- engine subsvatem which have connections ‘interfaces, with objects
- in other subsystems external to the engine subsvetem,
- and another to update all objects internal to the engine subsvstem
- based on the connections 'interfaces between each other
-~ Specifying the name of the engine allows the work to he spead owt
across the avauable processing time, and pushes thus decision up
- to a higher, more intelligent being the executive. to choose the
order of updating the engines in the engine subsystem
- | References:
-1 Design Documents:

",

- a8 v e et

88 CMU/SEI-87-TR-43

‘. .'v-'. -..\' "o 4.‘.-..-

'-l‘.:f ¢ "vl\' \f\

-

SRR T,
.

7

ﬁ

L
-
v
| -
" &
-
. 5
-
-
-
-
w _-
=

(

[T

' -

CG

{

o’

\2 w"
[} "

r oat

f .
R
['-J
L 'v-l
R
L)

.-"'.r'a".-"-.*.r.».n.- -"_'r.r/- ’

none

User’s Manual:
none

Testing and Validation:

-- none

- i Notes:
- none

i Modification History:
21Aug8’ cpp created

-- Distribution and Copvyright Notice:
TBD

- Disclaimer-
‘This work was sponsored by the Department of Defense.
The rviews and conclusions contained in this document are
solel~ those of the authors, and should not be interpreted as
representing official policies, either expressed or implied,
of the Soffware Engineening Institute, Carnegie Mellon University,
the U'S Aur Force, the Department of Defense, or the LU'.S. Government.”

. SRR NCSCIBORRBBNIVVEBANQVBNNRRVIVRBPVIGFLPUERAFBGEBLBIERAENA2Y

with Flight_Subsystem_Names: - Provides the type ‘definition; of the

use Flght_Subsystem_Names, --. names of the engines defined for this
- system:
- Names_Of_A_Flight_Subsystem

package Engine_Updater is

procedure Update_Engine(Given_Engine_Name: in Name_Of_A_Flight_Subsystem),

PRVBVVVRCBRPRB RV RPN SRBAVRNNSRBNFBGE RGN RNC BB L ERPEFRRBRRNFKP RS

— | Description:

- Allows the simulation of the Engine Subsystem to be updated

- and made consistent. Then other subsystems dependent upon
- the Engine Subsystem can access the consistent state of the
Engine Subsystem. It is an atomic action.

i

—~i Parameter Description:

- Given_Engine_Name

-- It's type is declared in Flight_Subsystem_Names and is used
- to allow a higher, more intelligent being (the executivej to

- choose the order of updating the engines in the

- engine subsystem.

e | FCRBBINPSVEEP PSP R NIP BRI RSSBE BB EI GBI RS SA RPN SRR GBERR IR RN R FEPRNEI SN

end Engine_Updater;

C.18. Package body Engine_Updater

e | VOB QR CRIGGIRARNSRERPRAVNSVANGE ARG KA CERR KX AIIEL LSRG L 4SSN 00000008

--| Module Name:
i Engine_Updater
--| Module Type:

-1 Pachkage Body

=

I s et

CMU/SEI-87-TR-43

e e W e e T A T T T e A R e e e e
LS - ..- _..'n' I\.‘ T .'J'_‘d’\- e T -

'-1-

-A191 @897 AN 00D (OBJECT-ORIENTED DESIGN) PARARDIGM FOR FLIGHT
SIHULRTORS CU)> CARNEGIE- HELLON UnNiv PITTSBUR H P

OF TWARE ENGINEERING INST K J LEE ET AL DEC 87

UNCLARSSIFIED CHU/SEI-B? -TR-43 ESD-TR-87-286 F/G 172

[0 & e
= =2
It e fle

= 122

N
O

l

2 i 1

MICROCOPY RESOLUTION TEST CHART

Y
'¢;§§
2

4 ::‘ (W IR

R tal Ak ol Sodl Eadl And Rl o i il A4h Aol bl Sbh St r'r‘rT

S
N
Y7
L
.
o,
f,:.':_
S .
'y - | Module Description:
L o -1 The operation provided by this package allows the "user” to
{ - | update the state of an engine, i.e., update the state of the
N -~ | objects which simulate the individual parts of the engine.
B .~ -~
ﬁ\." —~| Because this subsystem updater is at the level above the
: et ~| object managers, we have decided that the subsystem updater
oo -~ | will internally implement the connection manager at this level
N —1 since we don't have to go around and touch the object managers

—~| and tell them to update themselves. The object managers update
| themseluves (their state) when the connection is made and the

~

i _.::: -1 state information is given to them.
N -1
o -1
€a -l
i\: ~| References:
. -1 Design Documents:
N -1 Engine Physical Model Diagram.
SN -1
oS ~| Testing and Validation:
::"-: -1 none
R -1
e —~1 Notes:
o -1 THIS IS NOT A FULL IMPLEMENTATION!!!
—| The code is done to demonstrate the process of connecting objects
= ~l in a subsystem.
=" -
,-
X _".-,: ~1 The connection manager wasn’t implemented at this level
- -t forther s stated above in the Module Description.
-1
"./: ~| Once the Engine subsystem has been updated, i.e., its state
‘ ~| made consistent, any object whose state is needed by objects
{ -1 in other subsystems can be had by directly accessing the object
:., ~| and getting its state.
N -
\
_r,\'J ~| All internal routines preform a type conversion on the data
- ~| when the data is transferred from engine object to engine object.
X -':"'j -1 This is done to allow flexibility and greater potential for reuse

~| of object managers. Another reason for type conversions, which
~| is related to the flexibility issue, is that there may be something
~| to model at the connection between the objects, i.e., a valve,

g

s

Yl - | regulator, ete., for which an object manager is not necessary.
.f:a' ~| Therefore, any calculations or transformations which need to occur
o ~| and be modelled at the connection can be made when the connection
- ~| between the objects occur.
y -1
A :
< -1 Modiflcation History:
- -1 24Aug87 cpp created
5% "y

'1' a -l

: ..E.. ~ | Distribution and Copyright Notice:

K - TBD

Ly > -l
Q.- -1 Disclaimer:

,7-':, -1 "This work was sponsored by the Department of Defense.
L0 «~| The views and conclusions contained in this document are
-.‘ -1 solely those of the author(s) and should not be interpreted as

. . —| representing official policies, either expressed or implied,

) .':. —~| of the Software Engineering Institute, Carnegie Mellon University,
e -1 the U.S. Air Force, the Department of Defense, or the U.S. Government.”
. - sensseass

o "

U

: " with Standard_Engineering Types;

" with Engine_Aggregate; --| Provides the type:
oy

N
:,j 90 CMU/SEI-87-TR-43

"

o
ARG

-

w

b S, Ve T TN Y S VY ¥ U TN ™ j NN > Y S > M ™ o= o 0
T e e N e s (e e G T N S e A Mt

(h

| L RO DRt Bt RV b g3

-1 Engine_Representation

[-1 Provides the object which allows
‘ -1 us to specify engine parts:
» -1 Engincs
with Diffuser_Object_Manager; --| Provides the type:
-1

- | Provides the function:

w5

with Rotorl_Object_Manager: -1 Provides the type: i
-1 :
~ --| Provides the procedure and function:
N ! -
.x')
with Fan_Duct_Object_Manager; ~ | Provides the type:
Y ‘ -1
™~ —| Provides the procedure:
= oy
with Rotor2_Object_Manager; --| Provides the type:
- -1
:' - | Provides the procedure and function:
~ -1
-1
‘~ with Burner_Object_Manager; --| Provides the type:
he) -
—| Provides the procedure and function:
-1
. -1
:-. with Exhaust_Object_Manager; - ! Provides the type:
. -1
.

-1 Provides the procedure:

package body Engine_Updater is
procedure Update_Engine(Given_Engine_Name: in Name_Of_A_Flight_Subsystem) is

-:r --| Description:
by -1 Allows the simulation of the Engine Subsystem to be updated
. -1 and made consistent. Then other subsystems dependent upon

-1 the Engine Subsystem can access the consistent state of the
-1 Engine Subsystem. It is an atomic action. The user must

y -1 specify the engine to be updated.

) -1
-1 The object managers which simulate the various parts of the

- -1 engine, thus comprising the engine subsystem, are

o -1 needed to update the subsystems state are the following:

D -1 Diffuser_Object_Manager

-1 Rotor1_Object_Manager

-1 Fan_Duct_Object_Manager

-1 Rotor2_Object_Manager

Burner_Object_Manager

-1 Exn.;ust_Object_Manager

-1 The connections between these objects and the state information

flowing between the objects were derived solely from the

Engine Physical Model Diagram shown in SEI Technical Report #CMU /SEI-87-TR-43,.
-1 An OOD Paradigm for Flight Simulators

R
t

=R
H

h

RN ~| Parameter Description:

> -1 Given_Engine_Name

B -l It’s type is declared in Engine_Names and is used to allow
-1 a higher, more intelligent being (the executive) to

S -1 choose the order of updating the engines in the

f B -1 engine subsystem.

-1
-1 Note:

This routine models the connection manager for this level.
- , SRERPRGCPERLBEIRR GG PERGRERSR AR R BB ERER PSR B R GEERR R AR E RS2 P E OB O

el]
i

H CMU/SEI-87-TR-43 91

h af 2 R Q0 b o & R BV

.

PRI M

TREECY Y VT T .Y el T

Y

Diffuser_Discharge_Pressure : Standard_Engineering_Types.Pressure;

Diffuser_Discharge_Temperature: Standard_Engineering_Types.Temperature;

Diffuser_Discharge_Air_Flow :Standard_Engineering_Types.Air_Flow;
begin

- Model the connection characterized by the dependence of the Rotorl
- on the Diffuser for Preumatic_Energy.

- NOTE, no type conversion is necessary because both types are based
-- on Standard_Engineering_Types Package definitions.

Diffuser_Object_Manager.Get_Discharge_Air_From(

A_Diffuser => Engine_Aggregate.Engines(Given_Engine_Name).The_Diffuser,

Returning Discharge_Pressure => Diffuser_Discharge_Pressure,
Returning Discharge_Temperature => Diffuser_Discharge_Temperature,
Returning_Discharge_Air_Flow => Diffuser_Discharge_Air_Flow
%
Rotorl_Object_Manager.Give_Fanl_Inlet_Air_To(

A_Rotorl => Engine_Aggregate.Engines(Given_Engine_Name).The_Rotorl,

Given_Fanl_Inlet_Pressure => Diffuser_Discharge_Pressure,
Given_Fanl_Inlet Temperature => Diffuser_Discharge_Temperature,
Given_Fanl_Inlet_Air_Flow => Diffuser_Discharge_Air_Flow

)3

end Update_Engine;

end Engine_Updater;

C.19. Package Engine_Aggregate

-1 Module Name:

-1 Engine_Aggregate

-1

- | Module Type:

~! Package Specification

-1

—~| Module Purpoee:

~1 This package names the TurboRotor1 Engines and their parts.
-
- | Module Description:

-1 A TurboRotorl Engine is an aggregate of parts:

-1 Diffuser,

-1 Rotorl,

-\ Fan_Duct,

-1 Rotor2,

-1 Bleed_Valve,

-1 Burner,

-1 Exhaust.

-1

—| The parts of a TurboRotor] Engine are objects which have state.
-1 Each part is managed by it's own object

--| manager. This package builds the four engines by calling on

-} the various object managers to create the parts. It then stores
—~| references to the parts in a constant array indexed by the

-1 Name_Of_A_Flight_Subsystem which is taken from the

--| Flight_Subsystem_Names package. The constant array

0
o \J

'"o?"-"'t:'fv‘.‘!*!"u‘\‘.l"',0.

CMU/SEI-87-TR-43

A

o

T

3R

2
at .
LAY
T
-.: —| is created when the package is elaborated. The constant array is
! .- —| called Engines. A part of an Engine is referenced as:
y l - Engines(Engine_Name).The_<part_kind>
ol -1 For example, the Rotorl of the second Engine is:
""‘. -1 Engines(Engine_2).The_Rotorl
YT -1 I
. 7 -l i
’: t. ~ | References:
: J -1 Design Documents:
-1 none
" 2
P, -1 User’s Manual:
') -1 none
2 o
S -1 Testing and Validation::
o -1 none
) -1
. --1 Notes:
< -1 Optimizations which were implemented: the initialization of Engines _
N —| occurs at the declaration of the Object instead of the body because i
~ --| the number of engines and the parts shouldn’t change; thus the object)
N -1 was also made a constant array of Engines. ;
v W fa - !
) r. - : i
\ - - | Modification History: !
, -1 20Apr87 cpp created
> -
oo -1
: - ~| Distribution and Copyright Notice:
™ ~-i TBD
| :. -
PO ~| Disclaimer:
{ n —~| "This work was sponsored by the Department of Defense.

—~| The views and conclusions contained in this document are
-1 solely those of the author(s) and should not be interpreted as
—~| representing official policies, either expressed or implied, i
—~| of the Software Engineering Institute, Carnegie Mellon University,

—~1 the U.S. Air Force, the Department of Defense, or the U.S. Government.”
-1

) AN
s

I'd

:- . with Flight_Subsystem_Names; ~! Provides the engine names to
" use Flight_Subeystem_Names; -| create instances of the engines
A2 -1 in the system.
N with Diffuser_Object_Manager; -| Provides the private type
: :- > use Diffuser_Object_Manager; - | Diffuser and a function to
‘ -1 create a New_Diffuser.
— with Rotorl_Object Manager; —! Provides the private type

~

use Rotorl_Object_Manager; -1 Rotorl and a function

W g -1 to create a New_Rotorl.
W with Fan_Duct_Object_Manager; - | Provides the private type
K use Fan_Duct_Object_Manager; --| Fan_Duct and a function
2 g - | to create a New_Fan_Duct.
' ' with Rotor2_Object_Manager; -1 Provides the private type
] uase Rotor2_Object_Manager; -1 Rotor2 and a function
s . —| to create a New_Rotor2.
A \.j with Bleed_Valve_Object_Manager; - | Provides the private type ‘
A use Bleed_Valve_Object_Manager; --| Bleed_Valve and a function |

- | to create a New_Rotor2.
with Bumer_Object_Manager; - | Provides the private type
\{" use Burner_Object_Manager; --| Burner and a function |
' - | to create a New _Burner.
with Exhaust_Object_Manager; ! Provides the private type
use Exhaust_Object_Manager; | Exhaust and a function
< —| to create a New_Exhaust.

package Engine_Aggregate is

CMU/SEI-87-TR-43 93

o PRI M 2
F o

R/
- o
-

BT W O g o) ') M ") o
RN A, .o.f‘t?'-«. Cn .c?‘a?':ufo?'.:?'.cft.e?-.o AN AN AN D e i e

N

O

[2’

“

C

RN

‘H'-'.t type Engine_Representation is -- Defines an engine representation

k) record -- as consisting of:

" The_Diffuser : Diffuser;

Q The_Rotorl : Rotorl;

o The_Fan_Duct : Fan_Duct;

N The_Rotor2 : Rotor2;

N ; The_Bleed_Valve : Bleed_Valve;

w0 The_Burner : Burner;

[The_Exhaust : Exhaust;

:‘) end record ;

-

e ~ Define an object which holds all 4 engines in the system and
\", - initialize them (i.e., all their parts).

h '\'." Engines: constant array (Engine_l..Engine_4) of Engine_Representation :=

b \-' (Engme_l => (

-.: The_Diffuser => New_Diffuser,
The_Rotorl => New_Rotorl,

. The_Fan_Duct => New_Fan_Duct,
Al The_Rotor2 => New_Rotor2,

P The_Bleed_Valve => New_Bleed_Valve,

W The_Bumer => New_Bumer,

e The_Exhaust => New_Exhaust
e)

K I Engine_2 => (

PY The_Diffuser => New_Diffuser,

5 The_Rotorl => New_Rotorl,

' The_Fan_Duct => New_Fan_Duct,

_\.—: The_Rotor2 => New_Rotor2,

e The_Bleed_Valve => New_Bleed_Valve,
- The_Burner => New_Burner,
N The_Exhaust => New_Exhaust

s)

{] Engine 3 =>(

p .- The_Diffuser => New_Diffuser,

.-:: The_Rotorl => New_Rotorl,

[The_Fan_Duct => New_Fan_Duct,
w~ The_Rotor2 => New_Rotor2,

.-:: The_Bleed_Valve => New_Bleed_Valve,

[+, The_Burner = New_Burner,

-) The_Exhaust => New_Exhaust
.)

:, Engine_4 => (
ot The_Diffuser =»> New_Diffuser,

The_Rotorl => New_Rotorl,
The_Fan_Duct => New_Fan_Duct,

-.lrJ'J'

L

e The_Rotor2 => New_Rotor2,

33 The_Bleed_Valve => New_Bleed_Valve,
" The_Bumer => New_Burner,
,_'\.: The_Exhaust => New_Exhaust
o~)

P %

2y '

"

:l end Engine_Aggregate;

)

0.
,"
e C.20. Package System_Power_Updater
L~ -l .

-(': - | Module Name:

-1 System_Power_Updater

e -

o -1 Module Type:

' :: -1 Package Specification

SN -

.

ol

o 94 CMU/SEI-87-TR-43

ORI IO ’, < X NF N0 D DEOOOO0OQOO0COOOSOGCORON NONT
Y ‘.fn‘.’\"fn',ﬂ'.fu'::y,,s‘,,u':tl’.'_c'.fo';,A'.fr'..o‘., \ OO0 OSCRICONCNO NI NN NG AL SN ENMO NS NANUAG A " WY

———

Y

T

NS

|
»

PN
R

| S B Y

P

—

o)

—iee
--| Module Description:

- stub package specification for completion of the Engine system
-l

-1 References:

—| Design Documents:

-1 none

-

-1 Testing and Validation:

-1 none

- |

- | Notes:

-1 none

-1
- | Modification History:
-1 21Aug87 kil created

-
--| Distribution and Copyright Notice:

-l TBD

-1

--| Disclaimer:

-1 "This work was sponsored by the Department of Defense.

—1 The views and conclusions contained in this document are

—1 solely those of the author(s) and should not be interpreted as

- | representing official policies, either expressed or implied,

—~| of the Software Engineering Institute, Carnegie Mellon University,

-1 the U.S. Air Force, the Department of Defense, or the U.S. Government."”

with Flight Subsystem_Names;
package System_Power_Updater is

procedure Update_System_Powaer (
A_Subsystem: in Flight_Subsystem_Names.Name_Of_A_Flight_Subsystem);

-1 wos
- | Description:

-1 Allows the simulation of the Electrical Subsystem to be updated

-1 and made consistent.

-1

- | Paramaeter Description:

~| a_subsystem is the subsystem to update

end System_Power_Updater;

CMU/SEI-87-TR-43

‘V" .l

- References

Q (1] Booch, Grady.
" Softfware Engineering with Ada.
o The Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1987.

'::j {21 Booch, Grady.
Software Components with Ada.
v The Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1987.

N (3] Hesse, Walter J. and Mumford, Nicholas V. S., Jr.
. Jet Propulsion for Aerospace Applications.
k V Pitman Publishing Corporation, New York, NY, 1964,

) .‘.j:_‘,.‘-_'v";_\

LaAasS

--
rololinf b gl ef}" JRL NN

‘4‘([W

y
. 96 CMU/SEI-87-TR-43 {

L]
T A A % % N, Y S s e N AT AT AT TS
B A A e a i o R e o et e R o

REPORT DOCUMENTATION PAGE

te. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED NONE
28, SECLRITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A APPROVED FOR PUBLIC RELEASE
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED
N/A
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

{ CMU/SEI-87-TR-43 ESD-TR-87-206

(1f applicable)

|6a. NAME OF PERFORMING OARGANIZATION rb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

FTWARE ENGINEERING INSTITUTE] SEI SEI JOINT PROGRAM OFFICE
6c. ADDRESS (City, State and 7Z1P Code) 7b. ADDRESS (City, State and ZIP Code)
CARNEGIE MELLON UNIVERSITY ESD/XRS1
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731
8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYmMaoL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (1f applicable)
SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003
B8¢c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
CARNEGIE MELLON UNIVERSITY ElEnaRaM. NJQ »y W

SOFTWARE ENGINEERING INSTITUTE JPO
PITTSRURGH, PA 15213 N/A N/A N/A

11 TITLE tInciude Security Clagsification)

AN OOD PARADIGM FOR FLIGHT SIMULATORS

12. PERSONAL AUTHORIS)
KEN LEF, ET Al

13 TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPQRT (¥r.. Mo.. Day) 15. PAGE COUNT
FINAL FAOM TO DECEMBER 1987 106

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB. GR. OBJECT-ORIENTED, SOFWTARE ENGINEERING, ADA, FLIGHT
SIMULATORS

19. ABSTRACT /Continue on reverse ([necessary and identify by block number)

THIS REPORT PRESENTS A PARADIGM FOR OBJECT-ORIENTED IMPLEMENTATIONS OF FLIGHT SIMULATORS.
IT IS A RESULT OF WORK ON THE ADA SIMULATOR VALIDATION PROGRAM (ASVP) CARRIED OUT BY
MEMBERS OF THE TECHNICAL STAFF AT THE SOFTWARE ENGINEERING INSTITUTE (SEI).

520 OISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
‘UNCLASSH:!ED/UNLlMITEO XX same as reY oTic users XF UNCLASSIFIED, UNLIMITED

ENAME OF RESPONSIBLE INDIVIDUAL 220 TELEPHONE NUMBER 22c OFFICE SYMBOL
| KARL SHINGLER (41257 768-7630 SEI JPO

